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A function f in the unit ball B of the Hardy algebra H � on the unit disc
D=[z # C : |z|<1] is a non-exposed point of B ( | f |<1 a.e. on T=[` # C :
|`|=1]) iff limn �T | fn | 2 dm=0, where m is the Lebesgue measure on T and
( fn)n�0 are the Schur functions of f. This result easily implies Rakhmanov's well-
known theorem which states that limn an=0 if _$>0 a.e. on T, (an)n�0 being the
parameters of the orthogonal polynomials (.n)n�0 in L2(d_). We prove that fnbn

is the Schur function of the probability measure |.n |2 d_, which leads to an impor-
tant formula relating |.n | 2 _$ to fn and bn=.n �.n*. A probability measure _ is
called a Rakhmanov measure if (V)&limn |.n |2 d_=dm. We show that a probabil-
ity measure _ with parameters (an)n�0 is a Rakhmanov measure iff the an 's satisfy
the Ma� te� �Nevai condition limn an an+}=0 for every }=1, 2, ... . Next, we prove
that even approximants An �Bn of the Wall continued fraction for f converge in
L2(T) iff either f is an inner function or limn an=0. This implies that measures
satisfying limn anan+}=0, }=1, 2, ..., and limn |an |>0 are all singular. � 2001
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1. INTRODUCTION

In his famous memoirs [8, Sects. 356�382, Chap. 18] L. Euler presented
the first systematic study of continued fractions, which he prefaced with his
strong belief that someday applications of continued fractions would be
widespread in the analysis of infinities. The ensuring development of math-
ematics confirmed Euler's prediction. A brief history of the subject can be
found in [23, Sect. 1.1]. However, already in 1938 G. Szego� wrote in the
Preface to his well-known book [51]: ``Despite the close relationship
between continued fractions and the problem of moments, and notwith-
standing recent important advances in this latter subject, continued frac-
tions have been gradually abandoned as a starting point for the theory of
orthogonal polynomials.'' Nowadays this tendency has only increased.
Continued fractions are considered a cumbersome tool deserving to be
expelled from consideration. Continued fractions could also be expelled
from the present paper. However, it does not look reasonable to artificially
exclude a fascinating, object integrating such different at first sight areas as
Schur's algorithm, orthogonal polynomials, and the Euclidean algorithm.

One of the most beautiful results presented in [8, Sect. 371] is the
formula

:
n

}=0

#}z}=
#0

1 &
(#1 �#0) z

1+(#1 �#0) z&
} } }

&
(#n �#n&1) z

1+(#n �#n&1) z
, (1.1)

representing the partial sums of a Taylor series as the approximants of a
continued fraction. Euler's formula (1.1) can easily be obtained from
Euler's recurrence formulae for the numerators Pn and the denominators
Qn of a continued fraction q0+K�

n=1 ( pn�qn),

Pn=qnPn&1+ pnPn&2 , Qn=qnQn&1+ pn Qn&2 , (1.2)

n=1, 2, ..., where P&1=1, P0=q0 , Q&1=0, Q0=1. Indeed, assuming we
are given a Taylor polynomial (1.1), we may assume that Q0= } } } =
Qn=1. Then the required continued fraction must satisfy P}=�}

j=0 #jz j,
}=0, 1, ..., n. Resolving the system of linear equations (1.2), we obtain that

q0 =#0 , p1=#1z, q1=1

p}=&(#} �#}&1) z, q}=1+(#} �#}&1) z, }=2, 3, ..., n.

Applying an elementary identity

#0+
#1 z

1+w
=

#0

1 &
(#1 �#0) z

1+(#1 �#0) z+w
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to the continued fraction obtained, we complete the proof of (1.1).
In spite of its simplicity Euler's formula has many important applications

starting from Brouncker's formula,

?
4

=
1
1+

1
2+

32

2 +
52

2 +
} } }

+
(2n&1)2

2 +
} } } ,

which was derived by Euler [8, Sect. 369] from the Taylor expansion of
arctg z at z=0, to the fundamental inequalities in the convergence theory
of continued fractions [23, Sect. 4.4.5, 26].

It is interesting that Schur's classical algorithm can be put in the form of
a continued fraction which is very similar to Euler's continued frac-
tion (1.1).

Let B be the set of all functions f holomorphic on the unit disc
D =

def [z # C : |z|<1] and satisfying

& f &� =
def

sup [ | f (z)|: z # D]�1.

Clearly, B is the unit ball of the Hardy algebra H�. See [12] for the basic
facts on H�. Recall [12, Chap. IV, Example 21] that for every f in B,
which is not a finite Blaschke product, Schur's algorithm determines an
infinite sequence (#n)n�0 , #n # D, as follows

f (z) =
def f0 (z)=

zf1(z)+#0

1+#� 0zf1(z)
; ... ; fn(z)=

zfn+1(z)+#n

1+#� nzfn+1(z)
; ... . (1.3)

In case

f = `
n

}=1

|*} |
*}

}
*}&z

1&*� }z

is a finite Blaschke product with n zeros *1 , ..., *n in D we have |#n |=1 in
(1.3) and Schur's algorithm interrupts at the n th step by Schwarz's lemma
[12].

The numbers #n= fn(0), n=0, 1, ..., are called the Schur parameters of f
and the functions fn are called the Schur functions.

By (1.3) fn is a superposition of fn+1 and of the Mo� bius transform

{n(w)=
zw+#n

1+#� nzw
=#n+

(1&|#n | 2) z
#� nz+1�w

,

which for every z, z # D, maps the closed disc [w: |w|�1] onto a closed
disc in D. Iterating we obtain that

f (z)={0 b {1 b } } } b {n( fn+1), (1.4)
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which obviously can be put in the form of a continued fraction

f (z)=#0+
(1&|#0 | 2) z

#� 0z +
1
#1 +

(1&|#1| 2) z
#� 1z +

} } }

(1.5)

+
1
#n +

(1&|#n |2) z
#� nz +

} } } .

Such a representation of Schur's algorithm was obtained by Wall [54]
(received by the editors May 26, 1943). Wall also proved that the
approximants An �Bn of order 2n for (1.5) converge to f uniformly on com-
pact subsets of D; notationally,

An

Bn

�� f (1.6)

Notice that the quotient An �Bn is obtained if we interrupt (1.5) at the term
1�#n and then make all arithmetic operations without cancellations. Hence
An and Bn are polynomials in z of degree n. In what follows An , Bn are
called Wall polynomials.

At approximately the same time Geronimus [13] (received by the
editors March 18, 1943) obtained another decomposition of f into a con-
tinued fraction,

f (z)=
#0

1 &
(1&|#0 |2)(#1 �#0) z

1+(#1 �#0) z &
(1&|#1| 2)(#2 �#1) z

1+(#2 �#1) z &
} } }

(1.7)

&
(1&|#n&1|2)(#n �#n&1) z

1+(#n�#n&1) z &
} } } ,

which in fact coincides with the even part of (1.5). In other words the
approximant of order n for (1.7) is exactly An �Bn . Geronimus [13] also
proved (1.6).

Returning to Euler's continued fraction (1.1), one can observe a
remarkable similarity between (1.7) and (1.1). Since any continued fraction
satisfies [23, Theorem 2.1, Sect. 2.1]

Pn

Qn
&

Pn&1

Qn&1

=
(&1)n&1 P1 } } } Pn

QnQn&1

, (1.8)

we arrive to the conclusion that f and An�Bn have the same Taylor polyno-
mials of order n centered at z=0. The above example supports the expecta-
tions that the continued fractions (1.5) and (1.7) also may have many
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important applications. These expectations were already justified in [13].
Using (1.7), Geronimus [13] obtained an important formula relating the
Schur parameters of f, f # B, with the parameters of orthogonal polyno-
mials. To state Geronimus' theorem we need some preliminaries.

Let T=[z: |z|=1] be the unit circle. Given a probability measure _ on
T the orthogonal polynomials (.n)n�0 in L2(d_) are obtained as the out-
come of the standard Gram�Schmidt orthogonalization algorithm applied
to the system of monomials (zn)n�0 :

.n(z)=knzn+ } } } +.n(0), kn>0

(1.9)
|

T

.n .� } d_={0, }<n
1, }=n.

For a polynomial p, p # Pn , Pn being the linear space of all polynomials in
z of degree n, we put

p*(z)=znp(1�z� ). (1.10)

It follows from the recurrence formulae [51, Chap. XI, Sect. 11.4,
(11.4.6�11.4.7)]

kn.n+1 =kn+1z.n+.n+1(0) .n*
(1.11)

kn.*n+1=kn+1.n*+.n+1(0) z.n

that the orthogonal polynomials (.n)n�0 are uniquely determined by the
parameters an=&.n+1(0)�kn+1 , n=0, 1, ... . We call (an)n�0 the Geroni-
mus parameters of _.

By Herglotz' theorem [49, Theorem 11.12, Theorem 11.19] the Herglotz
transform

F_(z)=|
T

`+z
`&z

d_(`) (1.12)

is a one-to-one mapping of the set of probability measures on T onto the
set of holomorphic functions F in D satisfying

F(0)=1, Re F(z)>0, z # D. (1.13)

Applying the Mo� bius transform (w&1) } (w+1)&1 to F, we obtain by
Schwarz's lemma [12, Chap. I, Lemma 1.1] that the formula

|
T

`+z
`&z

d_(`)=
1+zf (z)
1&zf (z)

(1.14)
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establishes a one-to-one correspondence between probability measures _
on T and the elements f of the unit ball B of the Hardy algebra H �. We
call the function f in (1.14) the Schur function of _.

Theorem (Geronimus [13, 14]). The Geronimus parameters of a prob-
ability measure _ on T coincide with the Schur parameters of the Schur
function of _:

an=#n , n=0, 1, ... . (1.15)

This beautiful result by Geronimus attracted the attention of a number
of mathematicians [16, 27, 43] who provided elementary proofs. The
original proof, however, used continued fractions.

Since Geronimus' theorem is important for the present paper, we provide
its proof in Section 5. Here we demonstrate a typical application of
Geronimus' theorem.

Theorem (Favard [6, 9]). Any infinite sequence (an)n�0 of points in D
is the sequence of the Geronimus parameters of a probability measure on T.

Proof. Easy arguments with the normal family B in D show that any
sequence (#n)n�0 , #n # D, n=0, 1, ... is the sequence of Schur parameters of
some function f in B, which uniquely determines a probability measure _
by (1.14). The Geronimus parameters of _ coincide with (#n)n�0 by
Geronimus' theorem. K

Given *, |*|=1, we denote by _* the probability measure with the
Geronimus parameters (*an)n�0 . The measure _&1 is of particular interest.
We denote by (�n)n�0 the orthogonal polynomials in L2(d_&1). Substi-
tuting (1.7) in (1.14), we obtain by Geronimus' theorem that

F_(z)=1+
2a0 z

1&a0 z&
(1&|a0 |2)(a1 �a0) z

1+(a1 �a0) z &
} } }

(1.16)

&
(1&|an&1| 2)(an�an&1) z

1+(an �an&1) z &
} } } .

Simple analysis of Euler's recurrence formulae (1.2) for the continued frac-
tion (1.16) and of the recurrence formulae (1.11) for the orthogonal poly-
nomials leads to the conclusion that �n* �.n* is the approximant of order n
for (1.16). This result by Geronimus [13] is an analogue of Tchebyshef 's
well-known result for orthogonal polynomials on the segment [&1, 1]
[52].
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The main purpose of the present paper is to apply methods of continued
fractions and related ideas to the study of orthogonal polynomials on the
unit circle T. Namely, we study the convergence properties of continued
fractions (1.7) and prove (Theorem 5, see Section 2 and Section 8) that
(1.7) converges in measure (with respect to the normalized Lebesgue
measure dm, � dm=1, on T) if and only if either limn #n=0 or f is an inner
function; i.e., | f |=1 a.e. on T. This theorem is the foundation for ``weak''
arguments leading to weak asymptotic formulae for orthogonal polyno-
mials. A good illustration is provided by Theorems 7, 8 (see Sects. 2
and 8) which say that

lim
n |

T }�n*
.n*

&F_ }
p

dm=0 (1.17)

for 0<p<1 if and only if either _ is a singular measure on T or limn an=
0, (an)n�0 being the Geronimus parameters of _.

To draw conclusions on ``strong'' convergence we obtain the following
important formula

|.n |2 _$=
1&| fn |2

|1&`bn fn |2 a.e. on T, (1.18)

where ( fn)n�0 are the Schur functions of _ and bn=.n�.n* (Theorem 2,
Sects. 2, 6).

In Sect. 5 we present a new proof of Szego� 's classical theorem and obtain
by (1.18) its ``strong'' version (Theorem 2.5 and Sect. 5)

lim
n |

T } log
1

|.n | 2&log _$ } dm=0 (1.19)

for every Szego� measure _ (see Sect. 2 for the definition).
Another application of (1.18) is a new characterization of Erdo� s

measures (=measures on T with _$>0 a.e. on T) in terms of the corre-
sponding Schur functions. Namely, _ is an Erdo� s measure if and only if

lim
n |

T

| fn | 2 dm=0, (1.20)

where ( fn)n�0 is the sequence of Schur's functions of _ (Theorem 1,
Sects. 2, 6). This and Geronimus' theorem immediately imply Rakhmanov's
well-known theorem [46], which says that the Geronimus parameters of
any Erdo� s measure tend to zero.

167SCHUR'S ALGORITHM



In Theorem 3 we extend (1.18) and prove that bn fn is the Schur function
of the probability measure |.n | 2 d_ (Sects. 2, 7).

An important rôle in the ``weak'' part of our approach is played by the
so-called Rakhmanov measures (see (2.15)). In Theorem 4 (Sects. 2, 7) we
describe Rakhmanov measures in terms of their Geronimus parameters.
This description is important for our main result��Theorem 5, since we
prove first that for any Rakhmanov measure the continued fraction of its
Schur function converges in measure on T.

A special attention is paid to the study of Nevai's class (=measures with
limn an=0). We show how our approach can be used to derive the most
important results for Nevai's class (Sects. 2, 6, 8).

The main technical tools of the present paper are collected in Sects. 4�5.
Here we exploit the fact that behind Schur's algorithm and Gram�
Schmidt's orthogonalization algorithm stands the algorithm of continued
fraction (1.7). See papers [24, 25] by Jones et al., concerning the rela-
tionship between the algorithms mentioned.

Notice that convergence result in L2(T) for Euler's continued fractions is
trivial. Indeed, Euler's continued fraction with parameters (#n)n�0 con-
verges in L2(T) if and only if

:
n

|#n |2<+�. (1.21)

On the other hand, by Boyd's theorem [3] (1.21) is a necessary and suf-
ficient condition for f with Schur parameters (#n)n�0 to be either a finite
Blaschke product or a nonextreme point of B. The presence of the coef-
ficients (1&|#n | 2) in (1.7) forces the corresponding continued fraction to
converge for a wider class of parameters compared with (1.1).

A generalization of Wall's theorem to more general continued fractions,
including the continued fractions corresponding to the polynomials
orthogonal with respect to real measures on the unit circle, was considered
by Frank [11].

2. THE RESULTS

Recall that a point x in the unit ball of a Banach space X is called an
exposed point of ball(X) if there is x* in the conjugate space X* such that
&x*&=x*(x)=1 but such that |x*( y)|<1 for all y in ball(X), y{x. By
the Amar�Fisher�Lederer theorem [10, 57] a function f, f # H �, is an
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exposed point of B if and only if & f &�=1 and m[` # T : | f (`)|=1]>0.
Our first result describes exposed points of B in terms of Schur functions.

Theorem 1. Let f # B with the Schur functions ( fn)n�0 . Then | f |<1
a.e. on T (with respect to the Lebesgue measure m) if and only if

lim
n |

T

| fn | 2 dm=0. (2.1)

The following corollary is immediate from Theorem 1.

Corollary 2.1. A function f in B is an exposed point if and only if

lim
n |

T

| fn |2 dm>0.

Applying Fatou's theorem on nontangential limits [12, Chap. I, Sect. 5]
to the real parts of (1.14), we obtain that

_$(`)=
1&| f (`)|2

|1&` f (`)|2 (2.2)

a.e. on T. Here _$=d_�dm is the Lebesgue derivative of _.
In the theory of orthogonal polynomials, a measure _ with _$>0 a.e. on

T is called an Erdo� s measure.
Since a non-zero function 1&zf (z) in the Hardy algebra H� cannot

vanish on a subset of positive Lebesgue measure on T [12, Chap. II,
Corollary 4.2], by the Amar�Fisher�Lederer theorem _ is an Erdo� s
measure if and only if the Schur function f of _ (see (2.2)) is a non-exposed
point of B. This implies the following corollary.

Corollary 2.2. A probability measure _ is an Erdo� s measure if and
only if the Schur function f of _ satisfies (2.1).

Corollary 2.3. Let _ be a probability Erdo� s measure on T with
Geronimus parameters (an)n�0 . Then

lim
n

an=0.

Proof. By Corollary 2.2 the Schur function f of _ satisfies (2.1). By
Geronimus' theorem [13] (see Sect. 1) the Schur parameters (#n)n�0 of f
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satisfy an=#n , n=0, 1, 2, ... . Using the mean-value property of holomor-
phic functions fn and Cauchy's inequality, we obtain that

|an |=|#n |=| fn(0)|= } |T

fn dm }�\|T

| fn | 2 dm+
1�2

,

which completes the proof since f satisfies (2.1). K

Corollary 2.3 is known as Rakhmanov's theorem [45, 46]. In view of the
importance of Rakhmanov's theorem for the theory of orthogonal polyno-
mials, serious efforts were undertaken to simplify the original proof. We
mention papers by Ma� te� et al. [35], by Rakhmanov [47], and by Nevai
[41]. These efforts resulted in the extension of Szego� 's theory to Erdo� s
measures or even to measures with the Geronimus parameters (an)n�0

satisfying limn an=0 [36, 37, 39].
The class of probability measures with limn an=0 is called Nevai's class.

By Rakhmanov's theorem Nevai's class contains Erdo� s' class. There are
examples of pure jump measures [5, 31, 33], pure singular continuous
measures [32], including some singular Riesz products [28], in Nevai's
class. Totik [59] constructed further important examples of measures in
Nevai's class. For any =>0 there exists a continuous function w with
m[w>0]<= such that w dm belongs to Nevai's class. For any probability
measure + with support T there exists a probability measure _ in Nevai's
class which is absolutely continuous with respect to +.

In terms of orthogonal polynomials the difference between Nevai's and
Erdo� s' classes is well demonstrated by the following beautiful results due to
Nevai [41]:

_$>0 a.e. � lim
n

sup
l�1

|
T } |.n |2

|.n+l |
2&1 } dm=0,

(2.3)

lim
n

an=0 � lim
n

inf
l�1 |T } |.n | 2

|.n+l |
2&1 } dm=0,

(see [29, Theorem B, p. 192; 35, Theorems 2 and 3, p. 64; 40, Theorem 1.1,
p. 295; 41, Theorem 4, p. 325]). Clearly, Corollary 2.2 contributes one
more equivalent condition to the first statement (2.3).

Following the philosophy presented in Sect. 1, Theorem 1 can be restated
in terms of the convergence of continued fractions (1.7). Recall (see Sect. 1)
that (An �Bn)n�0 are the approximants of (1.7). It is known [3, 54] (see
also Sect. 4) that &An �Bn &�<1. It follows that An(`)�Bn(`) # D for every
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` # T. Therefore we can calculate the pseudohyperbolic distance between
An(`)�Bn(`) and f (`). Recall [12, Chap. I, Sect. 1] that the pseudohyper-
bolic distance on D is defined by

\(z, w)= } z&w
1&w� z } (2.4)

and is extended to T by continuity.

Corollary 2.4. Let f # B and let (An �Bn)n�0 be the approximants of
(1.7). Then f is a non-exposed point of B (equivalently _ is an Erdo� s
measure) if and only if

lim
n |

T

\2( f, An �Bn) dm=0. (2.5)

Proof. By (1.4�1.5) we have

f (z)={0 b {1 b } } } b {n( fn+1), An �Bn={0 b {1 b } } } b {n(0). (2.6)

The pseudohyperbolic distance on D is invariant under a Mo� bius confor-
mal isomorphism of D [12, Chap. I, Sect. 1]. Since for z # T the Mo� bius
transform {}(w)=(zw+#}) } (1+#� }zw)&1 is a conformal isomorphism of
D, we obtain by (2.6) that \( f, An�Bn)=| fn+1| on T. K

By Lebesgue's dominated convergence theorem [53, Chap. VII, Sect. 3,
Theorem VIII.3.1] (2.5) is in fact equivalent to

lim
n

m[` # T : \( f, An�Bn)�=]=0 (2.7)

for every =>0. In other words \( f, An �Bn) tends to zero in measure,
notationally \( f, An �Bn) O 0.

Clearly, we can replace the pseudohyperbolic distance \ in (2.7) by the
Poincare� metric

P(z1 , z2)=log
1+\(z1 , z2)
1&\(z1 , z2)

.

Thus we obtain the following description of Erdo� s' class in terms of
continued fractions and Lobachevskii's geometry.

Corollary 2.5. A probability measure _ on T is an Erdo� s measure if
and only if the Schur function f of _ satisfies

P( f, An �Bn) O 0. (2.8)
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It is interesting to compare (2.8) with an analogous description of Szego�
measures. Recall that a probability measure _ on T is called a Szego� mea-
sure if limn kn<+: (see (1.9)). By Szego� 's theorem _ is a Szego� measure
if and only if log _$ # L1(T) [51, Chap. XII, Sect. 12.3].

Theorem 2.6. A probability measure _ is a Szego� measure if and only if

lim
n |

T

P( f, An �Bn) dm=0. (2.9)

Proof. Since \( f, An�Bn)=| fn+1| on T, we obtain that

P( f, An �Bn)=log
1+| fn+1|
1&| fn+1|

. (2.10)

For f # B we obviously have Re(1&zf )>0 in D. Hence 1&zf is an outer
function in H� [12, Chap. II, Corollary 4.8a]. It follows that

|
T

log |1&zf | 2 dm=0.

Combining this identity with (2.2), we obtain that

|
T

log _$ dm=|
T

log(1&| f |2) dm.

Next, by [12, Chap. V, Example 21(d)] (see also (6.1)) we have

|
T

log(1&| f | 2) dm=log |n+|
T

log(1&| fn+1|2) dm,

where

|n= `
n

}=0

(1&|#} | 2)= `
n

}=0

(1&|a} |2)=
1

k2
n+1

.

Since by Szego� 's theorem [51]

lim
n

log
1

k2
n+1

=|
T

log _$ dm,

we conclude that _ is a Szego� measure if and only if

lim
n |

T

log
1

1&| fn+1|2 dm=0. (2.11)
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If _ is a Szego� measure then (2.11) and the elementary inequality
log 1

1&x�x imply (2.1) and therefore (2.9) holds by (2.10). Similarly
(2.9�2.10) imply (2.1) and (2.11). K

In [38] Ma� te� et al. developed a method of weak and strong con-
vergence. This method turned out to be very useful not only for the proof
of Rakhmanov's theorem, but also for a deeper study of Erdo� s' class.

Roughly speaking this method is similar to a well-known method in the
theory of quadratic forms. Suppose that we want to minimize a quadratic
form Q in a Hilbert space over a hyperplane F. If we pick any sequence
(en)n�0 of vectors in F such that limn Q(en)=min, then a priori we can
only say that the sequence (en)n�0 converges to the extremal vector e in the
weak topology. But if in addition we attract convexity arguments, such as
the parallelogram identity, then we can conclude that in fact (en)n�0

converges to e in the strong topology.
Our proof of Theorem 1 also uses arguments of weak and strong

convergence. The main difference is that we put this idea in the context of
continued fractions (1.5), or, what is equivalent, in the context of Schur's
algorithm.

Instead of the parallelogram identity, mentioned in the example above,
we use the following formula which is interesting in itself.

Theorem 2. Let _ be a probability measure on T with infinite support,
let (.n)n�0 be the orthogonal polynomials in L2(d_), and set bn =

def .n �.n*.
Let ( fn)n�0 be the Schur functions of the Schur function of _. Then

|.n |2 _$=
1&| fn |2

|1&`bn fn |2 (2.12)

a.e. on T.

Remark. Theorem 2 also holds for _ with finite support but in this case
(2.12) is trivial. Clearly bn is the finite Blaschke product constructed by the
zeros of .n .

In Section 5 we present a simplified version of weak and strong
arguments to provide a simple proof of Szego� 's classical theorem. Com-
bined with (2.12) this yields the following result.

Theorem 2.5. Let _ be a Szego� measure. Then

lim
n |

T } log
1

|.n | 2&log _$ } dm=0. (2.13)

Our version of weak and strong arguments is based on two well-known
theorems.
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Let M(T) be the Banach space of all finite Borel measures equipped with
the variation norm. Let C(T) be the Banach space of all continuous func-
tions f on T with the standard sup-norm: & f &=& f &�=sup [ | f (`)|: ` # T].
By Riesz' theorem the conjugate space C(T)* is identified with M(T) via
the standard duality

(+, f ) � |
T

f d+.

This duality determines the weak-V topology in M(T).

Theorem (Helly's Theorem). Let (+n)n�0 be a sequence of finite non-
negative Borel measures on T. Then

(V)-lim
n

+n=+

if and only if for every open arc I on T with the endpoints carrying no point
masses of + we have

lim
n

+n(I )=+(I ).

Remark. It is important to observe that the necessity of Helly's theorem
does not hold for real Borel measures. The sequence +n= 1

2 $`n&
1
2 $`n+1

,
where `n=exp[2?i } �n

}=1 1�}], converges to zero in the weak-(V) topology
while +n(I )=\1

2 infinitely often if I is any open arc on T. This should be
kept in mind in Section 5 in the proof of Szego� 's theorem. See [48,
Chap. III, Section 1, Sect. 55] for the proof of Helly's theorem in the stated
form.

Theorem (Jensen's Inequality). Let (X, +) be a probability space. Let v,
v # L1(+), be a real-valued function and . a concave function on the real line
R. Then

|
X

.(v) d+�. \|X
v d++ .

An elegant proof of Jensen's inequality can be found in [12, Chap. I,
Section 6]. Theorem 2 can be generalized.

Theorem 3. Let _ be a probability measure on T with Schur function f.
Let (.n)n�0 be the orthogonal polynomials in L2(d_), ( fn)n�0 the Schur
functions of f, bn=.n �.n*. Then

|
T

`+z
`&z

|.n(`)|2 d_(`)=
1+zfnbn

1&zfn bn
, z # D. (2.14)
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Theorem 3 has an interesting application to one important class of
measures which we are going to describe. In [45, Lemma 2] Rakhmanov
proved that

(V)-lim
n

|.n |2 d_=dm (2.15)

if _ is an Erdo� s measure. It was shown by Ma� te� et al. [38, Corollary 2.2]
that in fact Erdo� s measures satisfy

lim
n |

T

| |.n | 2 _$&1| dm=0. (2.16)

Later another proof of (2.16) was given by Rakhmanov [47]. In Section 6
we show how one can obtain (2.16) with the techniques developed for the
proof of Theorem 1.

We say that a probability measure _ is a Rakhmanov measure if (2.15)
holds.

It is clear from Theorem 3 that _ is a Rakhmanov measure if and only
if the sequence ( fnbn)n�0 converges to zero uniformly on compact subsets
of D:

fn bn
�� 0 (2.17)

In Section 7 we show that Rakhmanov measures can be described in
terms of Geronimus parameters.

Theorem 4. Let _ be a probability measure on T with Geronimus
parameters (an)n�0 . Then _ is a Rakhmanov measure if and only if the
sequence (an)n�0 satisfies the Ma� te� �Nevai condition

lim
n

anan+}=0 (2.18)

for every }, }=1, 2, ... .

The Ma� te� �Nevai condition appeared first in [34] (for }=1) in relation
to asymptotic properties of the ratio of orthogonal polynomials. In
Section 7 we show that

8*n+1�8n* �� 1 (2.19)
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in D if and only if the Geronimus parameters of _ satisfy the Ma� te� �Nevai
condition (2.18) for every, }, }=1, 2, ... . Here 8n =

def k&1
n } .n stands for a

monic orthogonal polynomial.
A simple analysis of (2.18) (see Sect. 7) shows that

lim
n

Card[ j: |a j |�=, j�n]
n

=0 (2.20)

for every positive =, if (an)n�0 satisfies (2.18) for every }, }=1, 2, ... . It is
well know that the latter condition is equivalent to

lim
n

1
n

:
n&1

}=0

|a} |=0. (2.21)

Of course, there are sequences satisfying (2.21) and not satisfying the
Ma� te� �Nevai condition for every } (see Sect. 7).

It follows from the definition that Rakhmanov measures cannot vanish
on any open arc of T. Therefore supp(_)=T for any Rakhmanov measure
_. In [13, 14] Geronimus proved that supp(_)=T for any probability
measure _ with the parameters satisfying

lim
n

n� `
n&1

}=0

(1&|a} |2)=1. (2.22)

It is easy to construct an example of a sequence (an)n�0 satisfying (2.18)
for }, }=1, 2, ... but not (2.22).

Let us turn back to Corollary 2.5. It is natural to ask: what happens if
we replace the Poincare� metric in (2.8) with Euclidian metric? The answer
is given by the following theorem. Recall that a function f in B is called
inner if | f |=1 a.e. on T [12, Chap. II, Sect. 6].

Theorem 5. Let f be a function in B with Schur parameters (#n)n�0 and
let (An)n�0 , (Bn)n�0 be the corresponding Wall polynomials. Then

lim
n |

T } f &
An

Bn }
2

dm=0 (2.23)

if and only if either f is an inner function or limn #n=0.

We also prove that the Schur functions of Rakhmanov measures satisfy
(2.23).

Theorem 6. Let _ be a Rakhmanov measure and let f be the Schur
function of _. Then

lim
n |

T } f &
An

Bn }
2

dm=0.
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The combination of Theorems 5 and 6 yields a curious application to
Rakhmanov measures.

Corollary 2.6. Let _ be a Rakhmanov measure which does not belong
to Nevai 's class. Then _ is a singular measure.

Proof. If _ is a Rakhmanov measure then by Theorem 6 the Schur
function f of _ satisfies (2.23). By Theorem 5 either f is an inner function
or lim #n=0. The second possibility is excluded by the assumption that _
does not belong to Nevai's class and by Geronimus' theorem. It follows
that f is an inner function and therefore _ is a singular measure (see
(2.2)). K

Geronimus' theorem and (1.16) lead to another interesting application in
the theory of orthogonal polynomials. Recall [12, Chap. II, Sect. 1] that
the Hardy class H p, 0<p<�, consists of all holomorphic functions f in
D satisfying

sup
0<r<1

|
T

| f (r`)| p dm(`)=& f & p
p <+�.

We identify f, f # H p, with the boundary values limr � 1&0 f (r`) of f on T.
By Smirnov's theorem [12, Chap. III, Sect. 2, Theorem 2.4] the Herglotz
transform F_ (see (1.12)) of any probability measure _ belongs to
�p<1 H p.

Theorem 7. Given a probability measure _ on T

�n*
.n*

O F_ (2.24)

if and only if either _ is a singular measure or _ is in Nevai 's class.

In case (2.24) holds the convergence in (2.24) takes place in the metric
of L p(T), 0<p<1.

Theorem 8. Let _ be either a singular measure or a measure in Nevai 's
class. Then for every p, 0<p<1,

lim
n |

T }�n*
.n*

&F_ }
p

dm=0. (2.25)
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It is interesting to compare Theorem 5 with known results in the theory
of continued fractions. To begin with we observe that any continued frac-
tion (1.7) is a T-fraction [23], i.e., a continued fraction of the form

K
�

n=1

[Fnz�(1+Gnz)], (2.26)

which converges to a meromorphic function in C if

lim
n

Fn=lim
n

Gn=0; (2.27)

see Theorem 7.23 of [23]. In the case of (1.7) these conditions are equiv-
alent to

lim
n

#n �#n&1=0. (2.28)

Therefore Theorem 5 follows from Theorem 7.23 of [23] if the sequence of
Schur parameters decays to zero faster any sequence of exponentials.

In Section 8 we prove (see Lemma 8.2) that the convergence in measure
of the Wall approximants An �Bn on any subset of positive Lebesgue
measure of the Lebesgue support E(_) of _ implies that _ is in Nevai's
class. This result can be applied to the study of gaps in the continuous
spectrum of _ for _ satisfying limn |#n |>0. Indeed, if we can prove that
An �Bn converges on an open arc of T, then by Lemma 8.2 and limn |#n |>0
we conclude that the Schur function of _ is unimodular on this open arc
and therefore _$#0 on it.

The simplest example of this sort is given by _ with constant Geronimus
parameters an #a, n=0, 1, ..., 0<|a|<1. Clearly,

f (z)=
a
1&

(1&|a|2) z
1+z &

} } }
&

(1&|a2| ) z
1+z &

} } } (2.29)

is the Schur function of _. The orthogonal polynomials in L2(d_) are called
Geronimus polynomials (see details in the recent paper [19]). The Schur
function f satisfies the equation (see (1.3))

f (z)=
zf (z)+a
1+a� zf (z)

, z # D,

which implies that | f |=1 exactly on the arc Ia=[ei%: |sin %
2|�|a|]. The

convergence of (2.29) on Ia follows from the convergence theorem for peri-
odic continued fractions [23, Theorem 3.2] or from Worpitsky's theorem
[23, Corollary 4.36 (B)].
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Theorem (J. Worpitsky). A continued fraction K(an �1) converges to a
finite value if

|an |�1�4, n=1, 2, ... . (2.30)

We apply Worpitsky's theorem to the continued fraction K(an(z)�1) with
an(z)=(1&|a|2) z(1+z)&2, n=1, 2, ..., which is equivalent to (2.29). For
ei% # Ia we have

|an(ei%)|=
1&|a| 2

4 cos2(%�2)
�1�4.

Since | f |=1 exactly on Ia , we conclude by Corollary 8.4 and Worpitsky's
theorem that the Wall approximants for f converge only on Ia .

Theorem (A. Pringsheim). A continued fraction K�
n=1(an �bn) converges

to a finite value if

|bn |�|an |+1, n=1, 2, ... . (2.31)

If rn is the nth approximant of K(an �bn), then |rn |<1, n=1, 2, ... .

See [23, Theorem 4.35] for a proof of Pringsheim's theorem. In Section 9
we combine Pringsheim's theorem with the approach described above to
obtain the following result on a gap in the spectrum.

Theorem 9. Let _ be a probability measure on T with Geronimus
parameters (#n)n�0 satisfying

lim
n

|#n |>0; (2.32.1)

lim
n

arg (#� n#n&1)=%, % # R. (2.32.2)

Then there exists an open arc I on T centered at exp(i%) such that supp(_) &
I is a finite set.

Clearly, Theorem 9 is in good agreement with the example of Geronimus
polynomials. It is also useful to compare Theorem 9 with Stieltjes' well-
known theorem.

Theorem (Stieltjes [50]). Let _ be a probability measure on T with real
Geronimus parameters (#n)n�0 satisfying

lim
n

(1+#n)(1&#n+1)=0. (2.33)

Then the derived set of supp(_) is [&1].
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It is easy to see [18, p. 407] that for real sequences (2.33) is equivalent
to (2.32.2) with %=0 and lim |#n |=1.

The following result was obtained in [18] (Theorem 6, (i) � (vi)).

Theorem 2.7. Let _ be a probability measure on T with infinite support.
Then the following statements are equivalent:

(1) the derived set of supp(_) is [{];

(2) &limn #� n #n&1={.

In Section 9 we prove the following extension of Theorem 2.7.

Theorem 10. Let _ be a probability measure on T with Geronimus
parameters (#n)n�0 satisfying

lim
n

|#n |=1. (2.34)

Then the following statements are equivalent:

(1) {, { # T, is in the derived set of supp(_);

(2) there exists an infinite subset 4 of the set of positive integers such
that &limn # 4 #� n#n&1={.

Remark. This theorem was obtained independently by L. Golinskii [58,
Theorem 5] by a different method.

Proof of Theorem 2.7. (1) O (2). The part (i) O (ii) of Theorem 6 of
[18] yields (V)-limn |.n |2 d_=${ . Since fnbn is the Schur function of _ by
Theorem 5 and since fn(0) bn(0)=&#n#� n&1 we obtain (2).

(2) O (1). Clearly, (2) implies (2.34) and the result follows by
Theorem 10. K

In Section 10 we describe absolutely continuous probability measures
with smooth positive densities in terms of the decrease of their Schur func-
tions. We define the Ho� lder class as follows. For 0<:<1 we put

4:=[ f # C(T) : | f (ei(x+t))& f (eix)|�Cf |t|:, x, t # R].

For :=1 we denote by 41 the Zygmund class

41=[ f # C(T) : | f (ei(x+t))+ f (ei(x&t))&2f (eix)|�Cf } |t|, x, t # R].

Now, let n<:�n+1, where n is a positive integer. Then 4: denotes the
space of all functions f on T with the n th derivative f (n) in 4:&n .
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Theorem 11. Let _ be a probability measure on T with Schur functions
( fn)n�0 satisfying

& fn&�=O \ 1
n:+ , :>0. (2.35)

Then _ is absolutely continuous and (_$)&1 # 4: .

Theorem 12. Let _ be an absolutely continuous probability measure with
(_$)&1 # 4: , and let ( fn)n�0 be the Schur functions of _. Then

& fn&�=O \log n
n: + . (2.36)

Corollary 2.8. Let _ be an absolutely continuous probability measure
with (_$)&1 # 4: . Then the Geronimus parameters (an)n�0 of _ satisfy

an=O \log n
n: + . (2.37)

Proof. This follows from the elementary inequality

|an |= } |T

fn dm }�& fn&� . K

For 0<:<1 Corollary 2.8 was proved in [27]. See [17] for the general
case :>0.

The following corollaries, which are immediate from Theorem 11 and
Theorem 12 by (4.22), demonstrate a remarkable similarity in the
behaviour of An �Bn and of the partial Fourier sums of f; see [56, Chap. II,
Theorem 10.8].

Corollary 2.9. Let _ be an absolutely continuous measure with
(_$)&1 # 4: . Let An , Bn be the corresponding Wall polynomials. Then

" f &
An

Bn "�
=O \log n

n: + , n � +�. (2.38)

Corollary 2.10. Let _ be a probability measure on T with Schur function
f satisfying & f &�<1. Suppose that the Wall approximants An �Bn satisfy

" f &
An

Bn "�
=O \ 1

n:+ , n � +�, :>0. (2.39)

Then _ is absolutely continuous and (_$)&1, f # 4: .
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Proof. By (4.15) and by (2.39)

|n

|Bn |2=1& }An

Bn }
2

�� 1&| f |2

uniformly on T, and therefore supT | | f |&|An* �Bn | | � 0, n � +�. It
follows from (4.22) that

& fn&�=O \ 1
n:+ , n � +�,

which completes the proof by Theorem 11. K

It is interesting to compare Corollary 2.10 with Bernstein's theorem [2].
The inverse problem of approximation by rational functions in the uniform
norm was first considered by Gonchar [20] who discovered the essential
difference from the polynomial case. The best possible result in this direc-
tion is due to Y. Brudnyi [4].

Let Lip(:, p)=[ f # L p(T) : &2}
h f &L p�cont |h|:]. Here } is the smallest

integer satisfying }>: and 2}
h=2h2}&1

h , 2h f =f (ei(x+h))&f (eix).

Theorem (Yu. Brudnyi [4]). Let Rn be the set of all rational functions
of order not exceeding n. Then

Lip \:,
1
:

+=+/{ f: distL�( f, Rn)=O \ 1
n:+=/Lip \:,

1
:

&=+ .

Thus, Corollary 2.10 shows that for smooth f the Wall approximants
behave like polynomials rather than like general rational fractions.

Basic Notations

m the normalized (�T dm=1)
Lebesgue measure on

T =
def [` # C : |`|=1].

C(T) the Banach algebra of all
continuous functions on T(see
Section 2).

M(T) the Banach space of all finite Borel
measures (see Section 2).

B the unit ball of the Hardy algebra
H� (see Section 1).
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fn the n th Schur function of a function
f, f # B (see Section 1).

#n the n th Schur parameter of f, f # B

(see Section 1).
Pn the set of polynomials in z of degree

�n (see Section 1).
p* the adjoint polynomial for p, p # Pn

(see (1.10)).
An and Bn the Wall polynomials (see Section 1,

(1.6)).
an the n th Geronimus parameter of a

probability measure _, _ # M(T)
(see Section 1).

.n the n th orthogonal polynomial in
L2(d_).

bn =
def .n �.n* the finite Blaschke product with the

zeros of .n (see Section 2).
8n=k&1

n } .n the monic orthogonal polynomial of
order n (see Section 2).

�n the n th orthogonal polynomial
corresponding to the parameters
(&an)n�0 .

F_ the Herglotz transform of a
probability measure _.

H p the Hardy class (see Section 2).
(V) weak topology is the topology of a

locally convex linear space X
induced by the standard duality of
X and its pre-dual space Y. The
choices X=M(T), Y=C(T);
X=L�(T), Y=L1(T) are
especially important for the present
paper.

E(_)=[` # T : _$(`)=d_�dm(`)>0] the Lebesgue support of _.

3. CONTINUED FRACTIONS

Let ( pn)n�1 and (qn)n�0 be sequences of complex numbers. A continued
fraction

q0+ K
�

n=1

( pn �qn)=q0+
p1

q1 +
p2

q2 +
} } }

+
pn

qn +
} } } (3.1)

183SCHUR'S ALGORITHM



is an algorithm which determines a sequence of approximants (Pn �Qn)n�0 .
According to this algorithm the approximant Pn �Qn is obtained by inter-
rupting the infinite decomposition (3.1) at the term pn �qn and making all
arithmetic operations without cancellations.

The definition of a continued fraction presented not only uniquely deter-
mines the values of the quotients Pn �Qn but also determines the
numerators Pn and the denominators Qn . Elementary induction shows that
Pn and Qn satisfy Euler's recurrence formulae

Pn =qnPn&1+ pnPn&2 ,
(3.2)

Qn=qnQn&1+ pn Qn&2 , n=1, 2, ...,

understanding that

P&1=1, P0=q0 , Q&1=0, Q0=1. (3.3)

The numbers pn and qn are called the partial numerators and the partial
denominators of a continued fraction. Very often Euler's recurrence for-
mulae (3.2) and (3.3) are used as a definition of a continued fraction.

To make a continued fraction algorithm more transparent we consider
the Mo� bius transforms

sn(w)=
pn

w+qn
, n=1, 2, ...,

of the Riemann sphere C� =C _ [�]. For n=0 we put s0(w)=w+q0 .
Then the superposition Sn(w)=s0 b s1 b } } } b sn(w) is a Mo� bius transform
and

Pn

Qn
=Sn(0)=s0 b s1 b } } } b sn(0)

(3.4)
=s0 b s1 b } } } b sn+1(�)=Sn+1(�).

The following theorem is well known [23, Theorem 2.1, Sect. 2.1].
However, we provide a proof which allows us to obtain two important
formulae.

Theorem 3.1. Let Pn be the nth numerator and let Qn be the nth
denominator of a continued fraction q0+K�

n=1( pn �qn). Then

Sn(w)=
Pn&1 w+Pn

Qn&1 w+Qn
,

(3.5)

PnQn&1&Pn&1Qn=(&1)n&1 p1 } } } pn .

184 SERGEI KHRUSHCHEV



Proof. Euler's recurrence formulae (3.2) and (3.3) can be put into
matrix form as follows:

\Pn&1

Qn&1

Pn

Qn+=\1
0

q0

1 +\
0
1

p1

q1+ } } } \0
1

pn

qn+ , n=0, 1, ... . (3.6)

Identifying the Mo� bius transforms s} with the corresponding (2_2)-
matrices and applying (3.6) to a column (w, 1), we obtain the first for-
mula (3.5). Applying the multiplicative functional C [ det(C) to (3.6),
det(C) being the determinant of a matrix C, we obtain the second for-
mula (3.5). K

Corollary 3.2. For any continued fraction q0+K�
n=1( pn �qn) we have

Pn

Pn&1

=qn+
pn

qn&1 +
pn&1

qn&2 +
} } }

+
p2

q1 +
p1

q0

(3.7)

Qn

Qn&1

=qn+
pn

qn&1 +
pn&1

qn&2 +
} } }

+
p2

q1

. (3.8)

Proof. Applying the operation of transposition to the matrix identity
(3.6), we obtain

\Pn&1

Pn

Qn&1

Qn +=\ 0
pn

1
qn+ } } } \ 0

p1

1
q1+\

1
q0

0
1+ . (3.9)

It is clear that (3.9) can be presented as a superposition of Mo� bius trans-
forms

Pn&1w+Qn&1

Pnw+Qn
=tn b } } } b t1 b t0(w), (3.10)

where t0(w)=w�(q0 w+1), t}(w)=1�( p}w+q}), }=1, 2, ... . Now, notice
that (3.7) is (3.10) for w=� and (3.8) is (3.10) for w=0. K

Formulae (3.7) and (3.8) are used in the convergence theory of con-
tinued fractions [23, Chap. 4, (4.1.3)]. We apply them for calculating
Schur parameters for some important functions. Also, they can be used to
obtain formulae for Pn , Qn .

We suppose that pn {0, n=1, 2, ... . Then, by Theorem 3.1, Sn is a
homeomorphism of the Riemann sphere. It follows that for every K in C�
the equation K=Sn(w) has a unique solution wn=wn(K).
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Lemma 3.3. Let p} {0, }=1, 2, ..., n, K # C� and w}=S &1
} (K),

}=1, ..., n. Then

Pn+Pn&1 wn = `
n

}=0

(q}+w})

(3.11)

Qn+Qn&1 wn= `
n

}=1

(q}+w}).

Proof. Observing that s}(w})=w}&1 , by (3.2) we obtain that

Pn+Pn&1wn =(qn+wn) Pn&1+ pnPn&2

=(qn+wn)(Pn&1+Pn&2wn&1)= } } }

=(qn+wn) } } } (P0+P&1w0)= `
n

}=0

(q}+w}).

The second identity (3.11) is obtained similarly. K

Theorem 3.4. Let p} {0, }=1, 2, ..., n, K # C� , w}=S &1
} (K), }=1, ..., n.

Then

Pn ={1
1+

wn

qn +
pn

qn&1 +
} } }

+
p2

q1 +
p1

q0 = } `
n

}=0

(q}+w}).

(3.12)

Qn={1
1+

wn

qn +
pn

qn&1 +
} } }

+
p2

q1= } `
n

}=1

(q}+w}).

Proof. Combining the first identity (3.11) with (3.7), we obtain the first
identity (3.12). Similarly, the second identity (3.12) follows from (3.8) and
the second identity (3.11). K

On the Riemann sphere C� , we consider the metric [7, Chap. I, Sect. 1]

k(w1 , w2)=
|w1&w2 |

- 1+|w1|2 } - 1+|w2 | 2
, (3.13)

which is equivalent to the Euclidean metric |w1&w2 | on any compact sub-
set of C. It is easy to prove [7, Chap. X, Sect. 6] that the metric k is
invariant under the transforms

w=
1+za�
z&a

, a # C� , (3.14)

which correspond to rotations of the Riemann sphere.
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Definition. A continued fraction q0+K�
n=1 ( pn �qn) is said to converge

to K, K # C� , if

lim
n

k(Pn �Qn , K)=0

It is easy to see that if, say, pn+1=0, then all approximants Pm �Qm for
m>n coincide with Pn �Qn (see (3.2) or (3.4)) and therefore this continued
fraction converges.

If pn and qn are complex functions on some set X, then the approximants
Pn �Qn are functions with values in C� defined on the same set X. In what
follows, to specify the character of convergence of the approximants Pn �Qn

on X we apply the corresponding terminology to the continued fraction
directly. However, we distinguish some exceptional cases where the specific
terminology for continued fractions is used. So, we say that a continued
fraction converges absolutely if

}P0

Q0 }+ :
�

n=0
} Pn+1

Qn+1

&
Pn

Qn }<+�.

Also, we say that a continued fraction converges unconditionally if for
every n the continued fraction K�

}=n( p} �q}) converges to a finite value.
Now, let us consider the continued fractions (1.7). As has already been

observed, the Wall polynomials An , Bn are the numerators and
denominators of (1.7). If, say, #n+1=0, then the corresponding continued
fraction does not make sense. However, as we show later in Sect. 4, An+1

and Bn+1 can be defined by (4.5), which implies that An+1=An ,
Bn+1=Bn . This explains why (1.7) fails. The reason is that for #n+1=0 we
obtain two identical approximants An �Bn and An+1�Bn+1 . To exclude an
excessive approximant one should eliminate the corresponding part of
(1.7). Suppose first that all #n 's are non-zero. Then

&
(1&|#n |2)(#n+1 �#n) z

1+(#n+1 �#n) z&(1&|#n+1|2)(#n+2 �#n+1) z�(1+(#n+2 �#n+1) z+w)

=&
(1&|#n |2)(#n+1 �#n+#n+2z2�#n+#n+1zw�#n)

1+(#n+1 �#n) z+(#n+2 �#n) z2+(#n+1 �#n) zw+#� n+1#n+2z+w

� &
(1&|#n |2)(#n+2 �#n) z2

1+(#n+2 �#n) z2+w

as #n+1 � 0. This shows how one can exclude indefinite terms in (1.7)
corresponding to zero parameters. In what follows, we do not specify this
agreement explicitly assuming that the corresponding adjustment is made.
However, this construction can be avoided if we agree in defining (1.7) by
the recurrence formulae (4.5).
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4. WALL'S POLYNOMIALS

Now, we apply the theory presented in Section 3 to the study of the Wall
continued fraction (1.5) of Schur's algorithm. Euler's formulae (3.2) for this
fraction take the form

P2n =#nP2n&1+P2n&2 ,
(4.1.1)

Q2n=#nQ2n&1+Q2n&2 , n=1, 2, ...,

P2n+1=z#� nP2n+z(1&|#n |2) P2n&1 ,
(4.1.2)

Q2n+1=z#� nQ2n+z(1&|#n | 2) Q2n&1 , n=0, 1, ...,

where P&1=1, P0=#0 , Q&1=0, Q0=1. This is immediate from (3.2) if we
notice that

p2n=1, q2n=#n , p2n+1=z(1&|#n | 2), q2n+1=z#� n ;

see (1.5).
Recall (see Section 1) that An =

def P2n and Bn =
def Q2n are called the Wall

polynomials associated with the Schur parameters (#n)n�0 . Since
deg P2n=deg P2n&1 and deg Q2n=deg Q2n&1 by (4.1.1), it is clear that An ,
Bn # Pn .

The following simple lemma shows that Wall polynomials An , Bn

uniquely determine the Wall continued fraction (1.5) of the corresponding
Schur algorithm.

Lemma 4.1. For n=0, 1, ... we have

P2n+1=zBn* , Q2n+1=zAn*. (4.2)

Proof. For n=0 we have by (4.1.2)

P1=z |#0 |2+z(1&|#0 |2)=z=zB0*, Q1=z#� 0=zA0*.

Assuming now that (4.2) holds for all indices smaller than n and observing
that deg P2n=deg P2n&1=deg An , we obtain by (4.1.1.�4.1.2) that

zQ*2n =z[#� nQ*2n&1+zQ*2n&2]=z[#� nP2n&2+P2n&1]

=z[#� nP2n&|#n |2 P2n&1+P2n&1]

=z#� n P2n+z(1&|#n |2) P2n&1=P2n+1 .

Similarly, Q2n+1=zP*2n . K
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The sequence (An �Bn)n�0 corresponds to the even part of Wall's con-
tinued fraction, while (zBn* �zAn*)n�0 corresponds to the odd part of (1.5).
The following theorem can be proved as a consequence of general formulae
[23, Chap. 2, (2.4.24), (2.4.29)]. However, we provide a proof which
follows the arguments of [26]. This allows us to present important
recurrence formulae for Wall polynomials.

Theorem 4.2. The sequence 1�0, 0�1, A0 �B0 , ..., An �Bn , ... is the sequence
of approximants of the continued fraction

Weven =
#0

1 &
(1&|#0 |2)(#1 �#0) z

1+(#1 �#0) z &
} } }

&
(1&|#n&1|2)(#n �#n&1) z

1+(#n �#n&1) z &
} } } .

(4.3)

The sequence 1�0, 0�1, zB0* �zA0* , ..., zBn* �zAn* , ... is the sequence of approxi-
mants of the continued fraction

Wodd =
z

#� 0z+
(1&|#0 | 2) #� 1z

#0#� 1+z &
(1&|#1|2)(#� 2 �#� 1) z

(#� 2 �#� 1)+z &
} } }

&
(1&|#n&1| 2)(#� n �#� n&1) z

(#� n�#� n&1)+z &
} } } . (4.4)

Proof. We observe that by (4.1.1) and (4.1.2) Wall polynomials satisfy
the recurrence formulae

B*n+1 =zBn*+#� n+1An , A*n+1 =zAn*+#� n+1Bn ,
(4.5)

An+1=An+#n+1zBn*, Bn+1=Bn+#n+1zAn*.

Indeed, by Lemma 4.2 we have

Bn+1 =Q2n+2=Q2n+#n+1Q2n+1=Bn+#n+1 zAn*,

B*n+1=z&1P2n+3=#� n+1P2n+2+(1&|#n+1| 2) P2n+1

=|#n+1| 2 P2n+1+#� n+1 P2n+(1&|#n+1|2) P2n+1

=zBn*+#� n+1An .

The formulae for An+1 , A*n+1 in (4.5) are proved similarly.
To prove (4.3) we should obtain the recurrence formulae for Bn and An

separately. By (4.5) we have for n=2, 3, ...,

Bn =Bn&1+#nzA*n&1 _#n&1

{A*n&1=zA*n&2+#� n&1 Bn&2 } _#n#n&1 z (4.6)

Bn&1=Bn&2+#n&1zA*n&2 _(&#n z).
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The multipliers in (4.6) are chosen so that all terms A* are cancelled when
we take the sum of the linear equations (4.6),

#n&1Bn&#nzBn&1=#n&1 Bn&1+|#n&1|2 #n zBn&2&#n zBn&2 ,

which implies the required recurrence formula

Bn=(1+#n z�#n&1) Bn&1&(1&|#n&1|2)(#nz�#n&1) Bn&2 . (4.7)

One can show similarly that the polynomials An also satisfy (4.7):

An=(1+#n z�#n&1) An&1&(1&|#n&1|2)(#nz�#n&1) An&2 . (4.7.1)

Since A0=#0 , B0=1 we obtain (4.3).
To prove (4.4) we exclude all terms A from the system

Bn* =zB*n&1+#� n An&1 _#� n&1

{An&1=An&2+#n&1 zB*n&2 } _#� n#� n&1 (4.8)

B*n&1=zB*n&2+#� n&1An&2 _(&#� n),

which yields

Bn*=(#� n�#� n&1+z) B*n&1&(1&|#n&1|2)(#� nz�#� n&1) B*n&2 . (4.9)

Similarly

An*=(#� n �#� n&1+z) A*n&1&(1&|#n&1|2)(#� nz�#� n&1) A*n&2 . (4.9.1)

Notice that (4.9) can be obtained from (4.7) by application of the V-opera-
tion. To complete the proof of (4.4) we observe that zB0*=q1 } 0+ p1 } 1
implies p1=z and zA0*=q1 } 1+ p1 } 0 implies q1=#� 0z. Similarly, it follows
from zB1*=q2 } zB0*+0 that q2=#0 #� 1+z, while zA1*=q2zA0*+ p2 implies
p2=z(A1*&q2#� 0)=z(#� 1+#� 0z&|#0 |2 #� 1&#� 0z)=(1&|#0 | 2) #� 1z. K

The following corollary is immediate from (4.7) and (4.7.1).

Corollary 4.3. For n=1, 2, ...

An=#0+ } } } +#nzn, Bn=1+ } } } +#n #� 0zn. (4.10)

Corollary 4.4. For n=1, 2, ...

An =#0+{#1+#0 } :
n&1

}=1

#� }#}+1= z+ } } } +#nzn (4.11.1)

Bn=1+{ :
n&1

}=0

#� }#}+1= z+ } } } +#n#� 0zn (4.11.2)
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An*=#� n+{#� n&1+#� n :
n&2

}=0

#� }#}+1= z+ } } } +#� 0 zn (4.11.3)

Bn*=#0#� n+{#� n#1+#� n&1#0+#� 0#0 } :
n&2

}=1

#� }#}+1= z+ } } } +zn. (4.11.4)

Proof. It follows by induction from (4.5) and Corollary 4.3. K

Formulae (4.11.1�4.11.4) are useful for the control of the zeros of the
corresponding polynomials.

Notice that (4.5) can be used as a definition of Wall polynomials. With
such a definition in mind one can exclude from the consideration the
corresponding continued fractions.

The recurrence formulae show that Wall polynomials An , Bn are
uniquely determined by the parameters #0 , ..., #n . This can also be seen
from the formula

\ zBn*
&zAn

&An*
Bn + = `

n

}=0
\ z

&#}z
&#� }

1 +
(4.12)

=
def \ z

&#nz
&#� n

1 + } } } \ z
&#0z

&#� 0
1 + ,

which is an analogue of (3.9). To obtain (4.12) one should put (4.5) into
matrix form and iterate. A similar formula can be found in [3, Sect. 1; 43,
Sect. 1]:

\ An*
&Bn

Bn*
&An += `

n

}=1 \
z

&#}z
&#� }

1 + } \#� 0
1

1
&#0+ .

If we restrict (4.5) to the unit circle, then it is easy to check that

\B� n

An

A� n

Bn += `
n

}=0
\ 1

z}#}

z� }#� }
1 + . (4.13)

In this form the recurrence formulae (4.5) appeared in [1, (13)].
Basic analytic properties of Wall polynomials follow from the determi-

nant identity

Bn*Bn&An*An=zn `
n

}=0

(1&|#} | 2) =
def |nzn, (4.14)
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which is obtained by application of the multiplicative functional C [
det(C) to both sides of any of the above matrix identities, say (4.12).
Restricting (4.14) to the unit circle, we obtain that

|Bn(`)|2&|An(`)|2#|n , ` # T. (4.15)

Lemma 4.5 (See [3]). For n, n=0, 1, ..., the Wall polynomial Bn does
not vanish in [z: |z|�1] and An �Bn , An* �Bn # B.

Proof. For n=0 we have B0 #1, A0=#0 . Suppose now that Bn does
not vanish in [z: |z|�1]. Then both functions An �Bn , An* �Bn are
holomorphic on [z: |z|�1] and belong to B by the maximum principle
(see (4.15)). By (4.5) we have

|Bn+1(z)|=|Bn(z)+#n+1zAn*(z)|�|Bn(z)| (1&|#n+1| } |An* �Bn | )>0

for every z, |z|�1. K

It is clear from (4.15) that &An �Bn &�=&An*�Bn&�<1. In fact

&An �Bn&�=\1&
|n

&Bn &2
�+

1�2

(4.16)

Since An �Bn , An* �Bn # B, it is natural to compute the Schur parameters
of these rational functions. By Theorem 4.2 An �Bn is the (2n) th approxi-
mant of (1.5). Therefore, the Schur parameters of An �Bn are given by

#0 , #1 , ..., #n , 0, 0, ... (4.17)

This shows that in Schur's theory the approximants An �Bn are similar to
the Taylor polynomials in the theory of Taylor series.

For An* �Bn we have Q2n+1�Q2n=zAn* �Bn . By (3.8) we may suppose that
the Schur parameters of An* �Bn is the ``reversed'' sequence #� n , ..., #� 0 .
However, this can be shown directly. By (4.5) we have

An*
Bn

=
zA*n&1+#� nBn&1

Bn&1+#nzA*n&1

=
z(A*n&1�Bn&1)+#� n
1+#n z(A*n&1 �Bn&1)

,

which implies that

#� n , #� n&1 , ..., #� 0 , 0, 0, ... (4.18)

is the sequence of the Schur parameters of An* �Bn by (1.3).
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Theorem 4.6 [43, Sect. 1]. Let An , Bn be the Wall polynomials corre-
sponding to a given function f in B with Schur functions ( fn)n�0 . Then

f (z)=
An(z)+zBn*(z) fn+1(z)
Bn(z)+zAn*(z) fn+1(z)

. (4.19)

Proof. We apply Lemma 4.1 and Theorem 3.1 to the Wall continued
fraction (1.5). By (1.4), we obtain

f={0 b {1 b } } } b {n( fn+1)=s0 b s1 b } } } b s2n+1(1� fn+1)

=S2n+1(1� fn+1)=
P2n+P2n+1 fn+1

Q2n+Q2n+1 fn+1

=
An+zBn* fn+1

Bn+zAn* fn+1

. K

Wall polynomials provide a simple description of the set En=En( f )
consisting of all functions in B with a fixed set of first Schur parameters
[#0 , #1 , ..., #n]:

En={An+zBn*E

Bn+zAn*E
: E # B= . (4.20)

This follows from (1.4) by Theorem 4.6. By the determinant identity (4.14)
we have for every E in B that

An+zBn*E

Bn+zAn*E
&

An

Bn
=zn+1E

|n

Bn(Bn+zAn*E)
, (4.21)

which implies that all functions in En have the same Taylor polynomial of
degree n at z=0 [12, Chap. IV, Exercise 21].

Corollary 4.7 [54, Theorem A]. Let f # B and let An , Bn be the Wall
polynomials associated with f. Then

An

Bn

�� f

uniformly on compact subsets of D.

Proof. We put E= fn+1 in (4.21) and by Theorem 4.6 obtain

f &
An

Bn
=zn+1fn+1

|n

B2
n(1+zfn+1 } An* �Bn)

. (4.22)
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By Lemma 4.5 and (4.15) we conclude that |n } B&2
n # B. Since An* �Bn # B

by Lemma 4.5, we obtain that

} f (z)&
An

Bn
(z)}� |z|n+1

(1&|z| )
, z # D,

which completes the proof. K

The following lemma is useful for the study of the pointwise convergence
of An �Bn on T.

Lemma 4.8. (1) Let ` # T and let | f (`)|<1. Then

lim
n

An

Bn
(`)= f (`) (4.23)

if and only if limn | fn(`)|=0.

(2) Let F=[` # T : | f (`)|=1] and let mF>0. Then An �Bn O f on F
if and only if |An �Bn | O 1 on F.

Proof. (1) If limn | fn(`)|=0, then (4.23) holds by (4.22). If (4.23)
holds and | f (`)|<1, then |An*(`)�Bn(`)| � | f (`)|<1. By (4.15) |n }
|Bn(`)|&2 � 1&| f (`)|2>0. It follows from (4.22), that limn fn(`)=0.

(2) By Cauchy's inequality (see (4.15) and (4.22))

|
F } f &

An

Bn }
p

dm=|
F \1& }An

Bn }
2

+
p dm

|1+zfn+1 } An* �Bn | p

�\|F \1& }An

Bn }
2

+
2p

dm+
1�2

_\|F

dm
|1+zfn+1 } An* �Bn |2p+

1�2

. (4.24)

If 2p<1, then the second integral on the right-hand side of (4.24) is
uniformly bounded by Smirnov's theorem [12, Chap. III, Theorem 2.4]. It
follows that An �Bn � f in the L p-metric on F by Lebesgue's dominated
convergence theorem [53, Chap. VII, Sect. 3, Theorem VIII.3.1] if we
assume that |An �Bn | O 1 on F. The converse conclusion is obvious. K

Returning to formula (4.19), we summarize a number of useful identities
for Wall polynomials in the following theorem.
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Theorem 4.9. Let f # B. Then

Bn+An*zfn+1 = `
n

}=0

(1+z#� } f}+1), (4.25.1)

An+Bn*zfn+1=(#0+zf1) `
n

}=1

(1+z#� } f}+1), (4.25.2)

Bn f &An=zn+1|n fn+1 `
n

}=0

(1+z#� } f}+1)&1

(4.25.3)

=zn+1fn+1 } `
n

}=0

(1&#� } f}),

Bn*&An* f =zn|n `
n

}=0

(1&z#� } f}+1)&1

(4.25.4)

=zn } `
n

}=0

(1&#� } f}).

Proof. The first identity can be obtained by Lemma 3.3 or can be
proved by induction [43, p. 295]. We obtain (4.25.1) by induction using
the useful identity

1&|#} |2=(1&#� } f})(1+#� }zf}+1). (4.26)

Assuming that (4.25.1) holds for indices smaller than n, we obtain by
(4.5), (1.3), and (4.26) that

Bn+An*zfn+1 =(Bn&1+#n zA*n&1)+(zA*n&1+#� n Bn&1) }
fn&#n

1&#� n fn

=
(Bn&1+zA*n&1 fn)(1&|#n |2)

1&#� n fn

=(Bn&1+zA*n&1 fn)(1+#� nzfn+1).

The second identity follows from (4.25.1) by Theorem 4.6.
To obtain (4.25.3) we multiply (4.25.2) by Bn and subtract (4.25.1) multi-

plied by An from the resulting identity. Now (4.25.3) follows by (4.14) and
(4.26).

The identity (4.25.4) is proved similarly. K
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Corollary 4.10. for f # B we have

Bn ={1
1+

#� nzfn+1

1 &
(1&|#n | 2)(#� n&1 �#� n) z

1+(#� n&1�#� n) z &
} } }

(4.27.1)

&
(1&|#1|2)(#� 0 �#� 1) z

1+(#� 0 �#� 1) z = } `
n

}=0

(1+z#� } f}+1),

An=f } Bn&zn+1fn+1 } `
n

}=0

(1&#� } f}). (4.27.2)

Proof. Since the Schur parameters of An* �Bn are given by (4.18), we
obtain by Theorem 4.2 that

An*
Bn

=
#� n
1 &

(1&|#n |2)(#� n&1 �#� n) z
1+(#� n&1 �#� n) z &

} } }
&

(1&|#1| 2)(#� 0 �#� 1) z
1+(#� 0�#� 1) z

, (4.28)

which implies (4.27.1) by (4.25.1). Clearly, (4.27.2) is equivalent to
(4.25.3). K

Notice that by comparing the terms in z in (4.25.1�4.25.4) one can easily
obtain (4.11.1�4.11.4).

The following lemma is a convenient tool in the study of Schur functions.

Lemma 4.11. Let ( f })}�0 be a sequence of functions in B, (#}
n)n�0

Schur parameters of f }, and ( f }
n)n�0 the Schur functions of f }. Suppose that

lim
}

f }(z)= f (z) (4.29)

uniformly on compact subsets of D. Let (#n)n�0 be the Schur parameters of
f, and let ( fn)n�0 be the Schur functions of f. Then for every n

lim
}

f }
n(z)= fn(z) (4.30)

uniformly on compact subsets of D and, in particular,

lim
}

#}
n=#n . (4.31)

Proof. For n=0 (4.29) and (4.30) are equivalent. We have

zf }
n+1=

f }
n&#}

n

1&#� }
n f }

n

. (4.32)
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If (4.30) holds for n, then lim} #}
n=#n (put z=0 in (4.30)). If |#n |=1, then

there is nothing to prove, since fn ##n and f is a finite Blaschke product of
order n. So fn+1 does not exist. If |#n |<1, then we have

f }
n&#}

n

1&#� }
n f }

n

&
fn&#n

1&#� n fn

=
( f }

n& fn)+(#n&#}
n)+(#� }

n&#� n) fn f }
n+#}

n #� n fn &#n#� }
n f }

n

(1&#� }
n f }

n)(1&#� n fn)
.

It follows that for any compact subset F of D, 0 # F, we have

sup
F } f }

n&#}
n

1&#� }
n f }

n

&
fn&#n

1&#� n fn }�
6 supF | f }

n& fn |
(1&|#}

n | )(1&|#n | )
,

which obviously implies that supF | f }
n+1& fn+1| � 0 as } � +�. K

It follows from Corollary 4.7 (Wall's theorem) that the Schur parameters
uniquely determine the corresponding function f in B. This, together with
compactness of B in the topology of uniform convergence, implies that the
converse to Lemma 4.11 is also true. Indeed, suppose that (4.31) holds for
every n and let g be any limit point of ( f })}�0 . Applying Lemma 4.11 to
a subsequence of ( f })}�0 , we obtain that g= f, since g and f have identical
Schur's parameters.

Corollary 4.12. Let f # B. Then limn #n=0 if and only if

fn(z) �� 0

uniformly on compact subsets of D.

Proof. Obviously the sequence (#}+n)n�0 is the sequence of the Schur
parameters of f} . Now we apply the converse of Lemma 4.11 to f },
f } =

def f} , }=0, 1, ... . K

The following theorem provides two useful representations for Schur
functions.

Theorem 4.13. Let f # B, ( fn)n�0 be the Schur functions of f, and
(#n)n�0 the Schur parameters of f. Let (An)n�0 , (Bn)n�0 be the Wall polyno-
mials corresponding to the parameters (#n)n�0 . Then
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f (z)= :
�

n=0

#n zn } `
n&1

}=0

(1&#� } f}), (4.33.1)

f (z)=#0+ :
�

n=0

#n+1 zn+1 |n

Bn+zAn* fn+1

, (4.33.2)

where both series converge uniformly on compact subsets of D.

Proof. Iterating an obvious identity

fn(z)=#n+(1&#� n fn) zfn+1 ,

we obtain

f (z)=#0+(1&#� 0 f0) #1z+(1&#� 0 f0)(1&#� 1 f1) #2z2+ } } }

+(1&#� 0 f0) } } } (1&#� n&1 fn&1) zn } fn . (4.34)

By (4.25.1) and (4.26) we have

|n

Bn+zAn* fn+1

= `
n

}=0

(1&#� } f}). (4.35)

Finally,

} |n

Bn+zAn* fn+1 }=
- |n

|Bn |
}

- |n

|1+zfn+1An* �Bn |
�

- |n

1&|z|
(4.36)

completes the proof. K

Notice that by (4.36) the convergence of (4.33.1) and (4.33.2) on any
compact subset of D is uniform on the ball B. Applying (4.33.2) to the
family ( fn)n�0 , we obtain another proof of Corollary 4.12. One can prove
similarly Lemma 4.11, as well as its converse.

A representation similar to (4.33.2) can be obtained by Wall's theorem.
By (4.5) we have

An+1

Bn+1

&
An

Bn
=#n+1zn+1 |n

BnBn+1

, n=0, 1, ..., (4.37)

which obviously implies

f (z)=#0+ :
�

n=0

#n+1 zn+1 |n

BnBn+1

. (4.38)
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Since |n } B&2
n # B, we have (compare with (4.36))

} |n

BnBn+1 }=
|n

|Bn |2 }
1

|1+z#n+1An*�Bn |
�

1
1&|z|

. (4.39)

However, there is an essential difference in the behavior of (4.33.2) and
(4.38) on the unit circle T.

Theorem 4.14. For every f # B the series (4.33.2) converges to f in
L p(T) for every p, 0<p<1.

Proof. Given p<1 we take any r, r>1, with rp<1 and obtain by
Ho� lder's inequality

|
T

| p
n

|Bn+zAn* fn+1| p } | fn+1| p dm

�\|T

|rp
n

|Bn+zAn* fn+1| rp dm+
1�r

\|T

| fn+1| r$p dm+
1�r$

(4.40)

�| p�2
n } \|T

| fn+1| r$p dm+
1�r$

\|T

dm
|1+zfn+1An* �Bn | rp+

1�r

�Cp } | p�2
n \|T

| fn+1| r$p dm+
1�r$

,

by Smirnov's theorem [12, Chap. III, Sect. 2, Theorem 2.4] since
Re(1+zfn+1An* �Bn)>0 and - |n } |Bn |&1�1, see (4.15). Now if f is the
Schur function of a Szego� measure _, then the integral in the left-hand side
of (4.40) tends to zero, since by (2.11) fn+1 O 0 on T and since |n ,
& fn+1&��1. If _ is not a Szego� measure, then by (5.2) limn |n=0. It
follows that for any f # B

lim
n |

T

| p
n

|Bn+zAn* fn+1| p } | fn+1| p dm=0,

which proves the theorem by (4.34) and (4.35). K

To the contrary, the remaining term in (4.38) is obviously f &An �Bn ,
which by Theorem 5 tends to zero in measure not for every f in B.

There is a natural question on the convergence properties of the odd
approximants P2n+1 �Q2n+1=Bn* �An*, see (4.2), of (1.5) in D.
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Theorem 4.15. Suppose that the Schur parameters (#n)n�0 of f satisfy

:
�

n=0

|#n |2<+�.

Then limn Bn* �An* exists at z, z # D, if and only if

lim
n

zn

An*(z)
=O.

Proof. It is immediate from (4.25.4) by Theorem 5.15 (see Section 5
below). K

Theorem 4.15 is due to Nja# stad [42]. We see that the convergence of the
odd pat of (1.5) is related to the distribution of the zeros of An* in D.
Similarly, the even part of the Mo� bius transform w [ (1+zw)(1&zw)&1 of
(1.5) regulates the distribution of the zeros of the orthogonal polynomial
(see (5.5) below).

5. ORTHOGONAL POLYNOMIALS

Let (.n)n�0 be orthogonal polynomials in L2(d_) and (an)n�0 be the
Geronimus parameters of _ (see Section 1). Since obviously .n* = z, z2, ...,
zn, n=1, ..., in L2(d_), we obtain the following formula [15]

kn } .n*(z)= :
n

j=0

.j (0) } .j (z), (5.1)

which implies (put z=0) that

1&|an |2=1&
|.n+1(0)|2

k2
n+1

=\ kn

kn+1+
2

,

and consequently that

k&2
n+1= `

n

j=0

(1&|aj |
2). (5.2)

It follows that the orthogonal polynomials (�n)n�0 with the parameters
(&an)n�0 have the same leading coefficients (kn)n�0 .
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The recurrence formulae (1.11) for the polynomials (.n)n�0 and (�n)n�0

can be put into the matrix form

\.n+1

.*n+1

�n+1

&�*n+1 +=
kn+1

kn \ z
&anz

&a� n

1 +\.n

.n*
�n

&�n*+ (5.3)

(cf. [43, (15)]). Iterating (5.3), we obtain an explicit formula for
orthogonal polynomials

\.n+1

.*n+1

�n+1

&�*n+1 +=kn+1 } `
n

}=0
\ z

&a}z
&a� }

1 +\1
1

1
&1+ . (5.4)

The matrix product in (5.4) equals the matrix (4.12) of the Wall polyno-
mials corresponding to the Schur parameters (an)n�0 . Hence we obtain
simple formulae relating orthogonal polynomials with Wall polynomials
(cf. [43, Theorem 5]):

.n+1 =kn+1(zBn*&An*) �n+1 =kn+1(zBn*+An*)
(5.5)

.*n+1=kn+1(Bn&zAn) �*n+1=kn+1(Bn+zAn).

By (5.5) and by Lemma 4.5 the polynomials .n* , �n* do not vanish in
[z: |z|�1]. We define by

8n(z)=k&1
n .n(z), 9n(z)=k&1

n } �n(z) (5.6)

the monic orthogonal polynomials. The following theorem shows that
(9n*)n�0 are the numerators and (8n*)n�0 are the denominators of
a continued fraction.

Theorem 5.1 [13, Theorem 5.2]. Let _ be a probability measure on T,
(.n)n�0 be the orthogonal polynomials in L2(d_), (an)n�0 the Geronimus
parameters of _, and (�n)n�0 the orthogonal polynomials associated with the
parameters (&an)n�0 . Then the sequence 1�0, 90* �80*, ..., 9 n* �8n* , ... is the
sequence of the approximants of the continued fraction

C=1+
2a0z

1&a0 z&
(1&|a0 |2)(a1 �a0) z

1+(a1 �a0) z &
} } }

(5.7)

&
(1&|an&2 | 2)(an&1 �an&2) z

1+(an&1 �an&2) z &
} } } .

201SCHUR'S ALGORITHM



Proof. By (5.5), (4.7), and (4.7.1) the sequences (8n*)n�2 and (9 n*)n�2

satisfy the recurrence equation

yn=qn yn&1+ pn yn&2

with qn=1+an&1 z�an&2 , pn=&(1&|an&2 |2)(an&2z�an&1), n=2, 3, ... . If
we put 8*&1=0, 9*&1=1, then we obtain by (5.5) that

81* = &a0 z+1=(1&a0z) 80*+2a0z8*&1 ,

91*=1+a0z=(1&a0z) 9 0*+2a0 z9*&1 ,

which completes the proof. K

Applying the multiplicative functional C [ det(C) to (5.4) and using
(5.2) we obtain

.n�n*+.n*�n=2zn (5.8)

(compare with (4.14)), which implies that

Re
�n*
.n*

=
1
2 \

�n*
.n*

+
�� n*
.� n*+=

z� n(.n�n*+.n*�n)
2 |.n |2 =

1
|.n |2 (5.9)

on T. It follows by Schwarz's formula [7, Ch. VIII, Section 3, (3.4)] that

�n*
.n*

=|
T

`+z
`&z

dm
|.n(`)|2 (5.10)

since �n*(0)�.n*(0)=kn �kn=1=�T |.n | &2 dm. By (5.5) and (5.10) we have

1+z(An�Bn)
1&z(An�Bn)

=|
T

`+z
`&z

dm
|.n+1(`)|2 . (5.11)

The following corollary is immediate from (5.11).

Corollary 5.2. An �Bn is the Schur function of the probability measure
|.n+1| &2 dm.

The following theorem is well known [30]. We provide a simple proof
for completeness.

Theorem 5.3. Let (.n)n�0 be a sequence of polynomials satisfying the
recurrence formulae (1.11). Then, for every n, the polynomials .0 , .1 , ..., .n

are orthogonal in L2( |.n |&2 dm).
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Proof. It is sufficient to prove that

|
T

p� .}
dm

|.n |2=0, |
T

zp.n*
dm

|.n |2=0

for every }, }�n, and for every polynomial p in Pn&1 .
If }=n, then by the mean-value theorem

|
T

p� .n

.n.� n
dm=|

T

znp�
.n*

dm=|
T

zp*
.n*

dm=0,

and similarly

|
T

zp
.n*

}
.n*
.� n*

dm=|
T

zp
.n*

dm=0.

This implies that .n = 1, z, ..., zn&1, and that .n* = z, z2, ..., zn in
L2( |.n |&2 dm). Now we present (5.1) and the first formula of (1.11) as
follows

kn.n* =kn&1 .*n&1+.n(0) .n
(5.12)

kn&1.n=knz.n&1+.n(0) .*n&1 .

From the first formula we conclude that .*n&1 = z, z2, ..., zn&1 in
L2( |.n |&2 dm), which together with the second formula yields .n&1 = 1, ...,
zn&2 in L2( |.n |&2 dm). Clearly, we can continue these arguments with
(5.12) by induction. K

We observe that Geronimus' theorem (see Section 1) is an easy conse-
quence of Theorem 5.3 and Corollary 5.2. Indeed, given a probability
measure _, by Theorem 5.3, we obtain that

|
T

�̀ } |.n+1(`)|&2 dm=|
T

�̀ } d_ (5.13)

for }=0, \1, ..., \(n+1), which implies that

|
T

`+z
`&z

dm
|.n+1| 2=|

T

`+z
`&z

d_+O(zn+2), z � 0. (5.14)
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Let An , Bn be the Wall polynomials associated with the Geronimus
parameters a0 , ..., an of _ (or of |.n+1| &2 dm by Theorem 5.3). If f is the
Schur function of _, then by Corollary 5.2 and by (5.14) we obtain

An

Bn
= f+O(zn+1),

which implies that An �Bn # En( f ) (see (4.20)�(4.21)) and therefore
an=#n . K

The following well-known lemma is a cornerstone of the method of weak
and strong convergence. It is immediate from (5.13) by Weierstrass'
theorem.

Lemma 5.4. Let _ be a probability measure on T with infinite support
and (.n)n�0 be the orthogonal polynomials in L2(d_). Then

(V)-lim
n

|.n |&2 dm=d_. (5.15)

It follows from Lemma 5.4 and (5.10) that the continued fraction (5.7)
converges to the Schwarz integral F_ uniformly on compact subsets of D.

We can now illustrate the method of weak and strong convergence (see
Section 2) with a simple proof of Szego� 's classical theorem.

Since f [ zf is an isometry and f [ zn&1 } f� is an antilinear isometry in
L2(d_), which maps Pn&1 onto itself, we obtain that

dist(zn, Pn&1)=dist(z� , Pn&1)=dist(1, zPn&1)=k&1
n . (5.16)

In agreement with (5.10) this shows that (kn)n�0 is an increasing sequence.
We say that _ is a Szego� measure if limn kn=k<+�.

Theorem 5.5. A probability measure _ is a Szego� measure if and only if
�T log _$ dm>&�. Moreover, for any probability measure _ on T we have

lim
n

1
k2

n

=exp \|T

log _$ dm+ . (5.17)

Proof. Since .n* does not vanish in [z: |z|�1], the function log |.n* |&2

is harmonic on [z: |z|�1] and therefore by the mean-value theorem we
obtain that

|
T

log
1

|.n |2 dm=log
1

|.n*(0)|2=log
1

k2
n

. (5.18)
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Suppose that �T log _$ dm>&�. Then by Jensen's inequality and by
(5.18)

|
T

log _$ dm=|
T

log \}.n*
kn }

2

_$+ dm

(5.19)

�log \|T }.n*
kn }

2

d_+=log
1

k2
n

,

which obviously implies that _ is a Szego� measure.
Suppose now that _ is a Szego� measure. In what follows we use the

standard notations u+=max(u, 0), u&=u+&u.
Observing that (log+ x)2�x, x>0, and that by (5.10) |.n |&2 dm is a

probability measure, we conclude that

|
T \log+ 1

|.n |2+
2

dm�|
T

|.n | &2 dm=1, (5.20)

which by (5.18) implies

|
T

log& 1
|.n |2 dm=|

T

log+ 1
|.n |2 dm+log k2

n�1+log k2. (5.21)

Now, consider the sequence d+n=log 1
|.n|2 dm, n=0, 1, ..., of real Borel

measures on T. Clearly, +n=++
n &+&

n , where d+\
n =log\ 1

|.n|2
dm.

By (5.21) the sequence (+&
n )n�0 is bounded in M(T). Let & be any

(V)-limit point of (+&
n )n�0 . Then there exists a set 4 of positive integers

such that

(V)-lim
n # 4

d+&
n =&$ dm+d&s , (5.22)

where d&s is the singular part of d& and &$ is the Lebesgue derivative of &.
Since the unit ball of the Hilbert space L2(T) is weakly compact, by (5.20)
any (V)-limit point | of (++

n )n # 4 is absolutely continuous with respect to
dm. It follows that there exists a subset 4$ of 4 such that

(V)- lim
n # 4$

d++
n =|$ dm

(5.23)
(V)- lim

n # 4$
d+n=d+,
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where

d+=(|$&&$) dm&d&s . (5.24)

Let I be any open arc on T such that its end-points do not carry point
masses of the singular measures d&s and d_s . By Jensen's inequality we
obtain

exp { 1
|I | |I

log
1

|.n | 2 dm=�
1
|I | |I

dm
|.n |2 . (5.25)

Applying Helly's theorem separately to (++
n )n # 4$ and to (+&

n )n # 4$ , we
obtain that

lim
n # 4$

1
|I | |I

log
1

|.n |2 dm=
+(I )
|I |

. (5.26)

Applying Lemma 5.4 and Helly's theorem, we obtain

lim
n

1
|I | |I

dm
|.n |2=

_(I )
|I |

. (5.27)

Combining (5.26) and (5.27) with (5.22), we arrive at

+(I )
|I |

�log \_(I )
|I | + .

It follows by Lebesgue's theorem on differentiation [12, 49, 53] that

+$�log _$ a.e. on T. (5.28)

Passing to the limit in (5.18) (assuming that n # 4$), we obtain

&�<log
1
k2+&s(T)=|

T

d++&s(T)=|
T

+$ dm�|
T

log _$ dm. (5.29)

Combining (5.29) with (5.19), we conclude that

|
T

log _$ dm=log
1
k2
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and that &s(T)=0. Moreover, taking (5.28) into account, we obtain

+$=log _$ a.e. on T. (5.30)

It follows from (5.24) that

d+=log _$ dm=(|$&&$) dm.

Since | was an arbitrary (V)-limit point of (++
n )n # 4 , this implies that

(V)&limn # 4 d++
n =|$ dm. Since & was an arbitrary (V)-limit point of

(+&
n )n�0 , we conclude that

(V)-lim
n

d+n=(log _$) dm. K

Corollary 5.6. A probability measure _ is a Szego� measure if and
only if

(V)-lim
n

log
1

|.n |2 dm=log _$ dm. (5.31)

The following corollary shows that in (5.31) we actually have con-
vergence in the strong topology.

Corollary 5.7. A probability measure _ is a Szego� measure if and
only if

lim
n |

T } log
1

|.n | 2&log _$ } dm=0. (5.32)

Proof. By Theorem 2, see (2.12), we have

log( |.n |2 _$)=log(1&| fn | 2)&2 log |1&`bn fn |,

which implies that

} log
1

|.n |2&log _$ }
=log+ |.n |2 _$+log& |.n | 2 _$

�log
1

1&| fn |2+2 log& |1&`bn fn |+2 log+ |1&`bn fn |.
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Since the mean value of log |1&`bn fn | is zero, we obtain that

|
T } log

1
|.n |2&log _$ } dm

�|
T

log
1

1&| fn |2 dm+4 |
T

log+ |1&`bn fn | dm

�|
T

log
1

1&| fn |2 dm+4 |
T

| fn | dm

�|
T

log
1

1&| fn |2 dm+4 \|T

log
1

1&| fn | 2 dm+
1�2

.

By Szego� ' s theorem and (2.11), we obtain (5.32). K

Corollary 5.8. Let _ be a Szego� measure. Then for every :, 0<:�1,

lim
n |

T

( |.n |2 _$): dm=1. (5.33)

Proof. Jensen's inequality implies

exp {|T

: log( |.n | 2 _$) dm=�|
T

( |.n | 2 _$): dm�1. (5.34)

Now (5.33) follows by Corollary 5.6. K

Corollary 5.9. Let _ be a Szego� measure. Then

lim
n |

T

|.n | 2 d_s=0. (5..35)

Proof. Applying Corollary 5.8 with :=1, we obtain that

lim
n |

T

|.n | 2 d_s=1&lim
n |

T

|.n |2 _$ dm=0

for any measure _ satisfying (5.33) [45]. K

Given a Szego� measure _ we define the Szego� function of _ by

D(z)=D(_, z)=exp \|T

`+z
`&z

log - _$ dm(`)+ . (5.36)
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Equivalently the Szego� function can be defined as the outer function in D
[12, Chap. II, Sect. 4] satisfying |D|2=_$ a.e. on T and D(0)>0.

The following corollary is a central point of Szego� ' s theory. The proof
is standard and makes use of the simplest form of weak and strong
arguments. As usual we assume that D&1#0 in L2(d_s).

Corollary 5.10. Let _ be a Szego� measure. Then

lim
n |

T

|.n*&D&1|2 d_=0. (5.37)

Proof. We have by (5.35) that

|
T

|.n*&D&1|2 _$ dm=2&2 Re |
T

.n*D dm+o(1) � 0,

since by Corollary 5.6 and by the mean-value theorem limn .n*D(0)=1. K

A parallel corollary can also be proved with the method of weak and
strong convergence.

Corollary 5.11. Let _ be a Szego� measure with _s #0. Then

lim
n |

T } 1
.n*

&D }
2

dm=0. (5.38)

Proof. By (5.11) 1�.n* is a point of the unit sphere of L2(T). Next,

1
.n*(z)

�� D(z) (5.39)

uniformly on compact subsets of D by Corollary 5.6, which implies that
1�.n* � D in the weak topology of L2(T). It follows that

|
T } 1

.n*
&D }

2

dm=2&2 Re |
T

D� }
1

.n*
dm � 0. K

By (5.17) and (5.2) we obtain the following corollary.

Corollary 5.12. A probability measure _ is a Szego� measure if and
only if the Schur parameters (#n)n�0 of the Schur function f of _ satisfy

:
�

n=0

|#n |2<+�. (5.40)

209SCHUR'S ALGORITHM



In Section 4 we proved that the Schur parameters of An* �Bn are given by
(4.18). The following lemma shows that An* �Bn is a good approximant for
the finite Blaschke product bn+1=.n+1�.*n+1 .

Lemma 5.13. Let (.n)n�0 be orthogonal polynomials and (An)n�0 ,
(Bn)n�0 the corresponding Wall polynomials. Then

bn+1=&
An*
Bn

+
|nzn+1

Bn(Bn&zAn)
. (5.41)

Proof. By (5.5) we have

bn+1 =
.n+1

.*n+1

=
zBn*&An*
Bn&zAn

+
An*
Bn

&
An*
Bn

=&
An*
Bn

+
zBn*Bn&zAn*An

Bn(Bn&zAn)

=&
An*
Bn

+
|n } zn+1

Bn(Bn&zAn)
;

see (4.14). K

In the following theorem, we extend the asymptotic formula (5.39) to the
class of Rakhmanov measures.

Theorem 5.14. Let _ be a probability measure on T with Schur function
f. Then _ is a Rakhmanov measure if and only if

1
.*n+1(z)

=
1+o(1)

- |n (1&zf )
} `

n

}=0

(1&#� } f}) (5.42)

uniformly on compact subsets of D.

Proof. By (5.5) and (4.35) we have

- |n

.*n+1

=
|n

Bn
}

1
1&zAn �Bn

=
1+z(An* �Bn) fn+1

1&zAn �Bn
} `

n

}=0

(1&#� } f}).

It follows by Wall's theorem (see Corollary 4.7) that (5.42) holds if and
only if (An* �Bn) fn+1

�� 0 in D, which is equivalent by Lemma 5.13 to
bn+1 fn+1

�� 0. Now the result follows by Theorem 3, see (2.17). K

To show that (5.42) is an extension of (5.39) we need the following
theorem.
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Theorem 5.15 Let ( fn)n�0 be the Schur functions of f # B and (#n)n�0

the Schur parameters of f. Then the series

:
�

n=0

#� n fn(z) (5.43)

converges uniformly on compact subsets of D if and only if the sequence
(#n)n�0 satisfies (5.40); i.e., f is the Schur function of a Szego� measure.

Proof. If (5.43) converges in D, then it converges at z=0 and we
obviously obtain (5.40), which implies that f is the Schur function of a
Szego� measure by Corollary 5.12.

Suppose now that (#n)n�0 satisfies (5.40). Let |z|�1&=, where =>0.
Applying Theorem 4.13 to fn , we obtain by (4.33.1), (4.35), and (4.36) that

fn(z)= :
�

}=0

#n+}z} } hn, }(z), (5.44)

where |hn, }(z)|�=&1 in |z|�1&=. It follows that

:
M

n=N

|#� n fn(z)|� :
M

n=N

:
�

}=0

|#n#n+} | =&1(1&=)}

(5.45)

�\ :
n�N

|#n |2+ } =&2

for |z|�1&=, which implies (5.43). K

The infinite product > (1&#� n fn) converges absolutely if and only if the
series � |#n fn | converges. Suppose that _ is a Szego� measure. Then by
(5.42) and (5.39) we obtain that

D(_, z)=
1

- |(1&zf )
} `

�

n=0

(1&#� n fn), z # D, (5.46)

or, equivalently, by (4.26) that

- |
D(_, z)

= `
�

n=0

(1&z#� n&1 fn), z # D, (5.47)

where |=limn |n , #&1=&1.
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6. ERDO� S MEASURES

We begin our proof of Theorem 1 with a proof of Theorem 2.

Proof of Theorem 2. By (4.19) and (4.14) we have for ` # T

1&| f (`)|2=1& }An&1+`B*n&1 fn

Bn&1+`A*n&1 fn }
2

=
(1&| fn(`)|2) |n&1

|Bn&1+`A*n&1 fn |2 . (6.1)

Notice that by (5.2) k&2
n =|n&1 . Therefore, it follows from (4.19) and (5.5)

that

|1&` f |2= } 1&
`An&1+`2B*n&1 fn

Bn&1+`A*n&1 fn }
2

=|n&1

|.n*&`.n fn | 2

|Bn&1+`A*n&1 fn |2 . (6.2)

Now by (2.2) we obtain from (6.1) and (6.2) that

_$=
1&| f |2

|1&` f |2=
1&| fn |2

|.n*&`.n fn | 2 (6.3)

a.e. on T. Multiplying (6.3) by |.n |2=|.n* | 2, we obtain (2.12). K

Let us multiply (2.12) by |1&`bn fn |2=1+| fn |2&2 Re(`bn fn). After
simple algebra we obtain

| fn | 2=
1&|.n |2 _$
1+|.n |2 _$

+Re(`bn fn)+
|.n | 2 _$&1
1+|.n | 2 _$

} Re(`bn fn). (6.4)

The mean-value theorem yields

|
T

Re(`bn fn) dm=Re |
T

`bn fn dm=0. (6.5)

Therefore, we obtain from (6.4) that

|
T

| fn |2 dm�2 |
T } 1&

2 |.n | 2 _$
1+|.n |2 _$ } dm. (6.6)
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Now the proof of Theorem 1 can be completed by Corollary 2.2 of [38],
since obviously

|
T } 1&

2 |.n |2 _$
1+|.n | 2 _$ } dm�|

T

|1&|.n |2 _$| dm. (6.7)

However, we provide another proof, different parts of which will be
generalized later.

Theorem 6.1. Let _ be an Erdo� s measure and let (.n)n�0 be the
orthogonal polynomials in L2(d_). Then

lim
n |

T } 1&
2 |.n |2 _$

1+|.n |2 _$ }
2

dm=0. (6.8)

Proof. We consider on T and auxiliary sequence of functions

gn=
2 |.n |2 _$

1+|.n |2 _$
, n=0, 1, ... . (6.9)

It is clear that 0�gn<2 a.e. on T.

Lemma 6.2. Let 8 be a function on [0, +�) defined by

8(x)={
x,

4x2

(1+x)2 ,

0�x<1,

1�x<+�.
(6.10)

Then 8 is an increasing concave function on [0, +�) satisfying

4x2

(1+x)2�8(x), 0�x<+�. (6.11)

Proof. Simple calculus shows that for 1�x<+� we have

8$(x)=8x(1+x)&3; 8"(x)=8(1&2x)(1+x)&4.

since 8$#1 on (0, 1), limx � 1+0 8$(x)=1, and 8"(x)<0 on (1, +�), it
follows that 8 is an increasing and concave function on [0, +�). Finally,
(6.11) turns into equality for x�1 and is elementary for x<1. K
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Taking into account (6.11) and applying Jensen's inequality, we obtain
that

|
T

g2
n dm=|

T

4( |.n |2 _$)2

(1+|.n |2 _$)2 dm�|
T

8( |.n | 2 _$) dm

�8 \|T

|.n | 2 _$ dm+�8(1)=1. (6.12)

It follows that

|
T

gn dm�\|T

g2
n dm+

1�2

�1. (6.13)

On the other hand, for any open arc I on T, we have by Cauchy's
inequality

1
|I | |I

- _$ dm=
1
|I | |I

- 2 |.n | - _$
(1+|.n | 2 _$)1�2 }

(1+|.n |2 _$)

- 2 |.n |

1�2

dm

(6.14)

�\ 1
|I | |I

gn dm+
1�2

} \ 1
2 |I | |I \

1
|.h | 2+_$+ dm+

1�2

.

Let g be an arbitrary weak-(V) limit point of the bounded sequence
(gn)n�0 in L�(T), i.e., a limit point in the topology induced by the
standard duality (L1, L�). Suppose that _ has no mass at the end-points
of I. Passing in (6.14) to the limit and applying Helly's theorem and (5.15),
we obtain that the inequality

1
|I | |I

- _$ dm�\ 1
|I | |I

g dm+
1�2

\1
2

}
_(I )
|I |

+
1

2 |I | |I
_$ dm+

1�2

(6.15)

holds for any open arc I on T except possibly for a family of arcs with
endpoints carrying point masses of _. Now we apply Lebesgue's theorem
on differentiation to (6.15) and obtain that

- _$�- g } ( 1
2_$+ 1

2_$)1�2

a.e. on T. Since _$>0 a.e. on T, this implies that g�1 a.e. on T. Combin-
ing this last inequality with (6.13) and observing that g is an arbitrary limit
point of (gn)n�0 in the weak-(V) topology, we obtain that the following
limits exist and are equal:

lim
n |

T

gn dm=lim
n |

T

g2
n dm=1. (6.16)
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It follows that

lim
n |

T

(1& gn)2 dm=1&2 lim
n |

T

gn dm+lim
n |

T

g2
n dm=0,

which obviously implies (6.8).

Remark. The idea of applying inequalities of type (6.14) to the proof of
weak-(V) convergence originates in paper by Rakhmanov [45, Lemma 2].
However, here it is used in a different context. Besides, instead of the
construction of [45] we use Lebesgue's theorem on differentiation.

Proof of Theorem 1. If m[` # T : | f (`)|=1]=$>0, then by (6.1)
m[` # T : | fn(`)|=1]=$ for every n and therefore (2.1) cannot hold.

If | f |<1 a.e. on T, then (2.1) follows from (6.6) by Theorem 6.1. K

The following theorem extends Theorem 6.1 to the class of Rakhmanov
measures. Given a probability measure _ on T we denote by E=E(_) the
Lebesgue support [` # T : _$(`)>0] of the absolutely continuous part of _.

Theorem 6.3. Let _ be a Rakhmanov measure and let (.n)n�0 be the
orthogonal polynomials in L2(d_). Then

lim
n |

E(_) } 1&
2 |.n |2 _$

1+|.n |2 _$ }
2

dm=0. (6.17)

Proof. Let (gn)n�0 be defined by (6.9) and let 8 be defined by (6.10).
For any open arc I on T we obtain by Jensen's inequality that

1
|I | |I

g2
n dm�

1
|I | |I

8( |.n |2 _$) dm�8 \ 1
|I | |I

|.n |2 d_+ . (6.18)

Since _ is a Rakhmanov measure, we obtain by Helly's theorem that

lim
n

1
|I | |I

g2
n dm�8(1)=1 (6.19)

and consequently

lim
n

1
|I | |I

gn dm�1. (6.20)
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Let g be any limit point of (gn)n�0 in the weak-(V) topology of L�(T)
and let G be any limit point of (g2

n)n�0 in this topology. By (6.14) we have

1
|I | |I

- _$ dm�\ 1
|I | |I

gn dm+
1�2

\ 1
2 |I | |I \

1
|.n | 2+_$+ dm+

1�2

,

which obviously implies that

1
|I | |I

- _$ dm�\ 1
|I | |I

g2
n dm+

1�4

\ 1
2 |I | |I \

1
|.n |2+_$+ dm+

1�2

.

Passing to the limit in these inequalities, we obtain by Helly's theorem and
by Lemma 5.4 that

1
|I | |I

- _$ dm�\ 1
|I | |I

g dm+
1�2

\_(I )
2 |I |

+
1

2 |I | |I
_$ dm+

1�2

,

(6.21)
1
|I | |I

- _$ dm�\ 1
|I | |I

G dm+
1�4

\_(I )
2 |I |

+
1

2 |I | |I
_$ dm+

1�2

,

for every open arc I whose endpoints do not carry mass of _. By Lebesgue's
theorem on differentiation we obtain from (6.21) that

- _$�- g } - _$, - _$� 4
- G } - _$,

a.e. on T. It follows that

1�min(g, G), a.e. on E(_). (6.22)

On the other hand, passing to the limit in (6.19) and (6.20), we obtain

1
|I | |I

g dm�1;
1
|I | |I

G dm�1 (6.23)

for any open arc I. Applying Lebesgue's theorem on differentiation, we con-
clude that

max(g, G)�1 a.e. on T. (6.24)

Obviously gn= g2
n=0 on T"E(_), which implies that g#G#0 on T"E(_).

It follows from (6.22) and (6.24) that

g=G=1E ,

where 1E denotes the indicator of the set E=E(_).
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Since g and G were chosen to be arbitrary weak-(V) limit points of
(gn)n�0 and (g2

n)n�0 , respectively, we may conclude that both these
sequences converge to 1E in the weak-(V) topology of L�(T). This implies
that

|
E

(1& gn)2 dm=|E|+|
T

g2
n dm&2 |

T

gn dm � 0, n � +�. K

Theorem 6.4. Let _ be a probability measure on T and let (.n)n�0 be
the orthogonal polynomials in L2(d_). Let f be the Schur function of _. Then

|
T

| |.n |2 _$&1| dm�12 } |
T

| fn | dm, n=0, 1, ... . (6.25)

Proof. It follows from (2.12) that

( |.n |2 _$&1) } |1&`bn fn |2=2(Re(`bn fn)& | fn |2) (6.26)

a.e. on T. Let ` be a point of T such that

( |.n | 2 _$&1)=&(|.n | 2 _$&1)&<0.

By (6.26) we obtain that Re(`bn fn)<| fn |2 and therefore

|1&`bn fn |�1&Re(`bn fn)>1&| fn |2.

Since | fn |�1 and |Re `bn fn |�| fn | a.e. on T, we obtain from (6.26) that

( |.n | 2 _$&1)& (1&| fn | 2)2�2 | fn |+2 | fn |2. (6.27)

Since |.n | 2 _$�0, it is clear that ( |.n |2 _$&1)&�1. It follows that

( |.n | 2 _$&1)&�2 | fn |+2 | fn |2+2 | fn |2�6 } | fn |, (6.28)

which implies that

|
T

( |.n | 2 _$&1)& dm�6 } |
T

| fn | dm. (6.29)

Finally,

|
T

( |.n |2 _$&1)+ dm=|
T

( |.n | 2 _$&1) dm+|
T

( |.n |2 _$&1)& dm

�6 |
T

| fn | dm,

since � |.n | 2 _$ dm�� |.n | 2 d_=1. K
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It is known [15] (see Corollary 5.10) that limn &|.n |2 _$&1&L1(d_)=0 for
any Szego� measure. This was extended to Erdo� s measures in [38] (see
[47] for another proof). However, for Szego� measures the polynomials .n*
converge in L2(d_) and therefore converge in measure with respect to the
Lebesgue measure m. On the other hand, if some subsequence of (.n*)n�0

converges in measure on some measurable subset E, E/T, mE>0, to an
almost everywhere finite measurable function, then _ is a Szego� measure
[15, Theorem 5.9]. This result follows from the observation that all func-
tions (.n*)&1 belong to the unit ball of the Hardy class H2 and from the
Khinchin�Ostrovskii theorem [44].

From this point of view the results obtained in [38] say that although
it is meaningless to talk about the convergence of .n* on T if _ is not a
Szego� measure, there are no obstacles to the convergence of |.n* |=|.n | on
T if _ is an Erdo� s measure.

In the following theorem we show how one can deduce the basic results
of [38] from the results of the present section.

Theorem 6.5. Let _ be a probability measure on T with Schur function
f and (.n)n�0 the orthogonal polynomials in L2(d_). Then the following
statements are equivalent:

(1) _ is an Erdo� s measure;

(2) the sequence ( fn)n�0 of the Schur functions of f converges to 0 in
measure on T (with respect to m);

(3)

lim
n |

T

| |.n | 2 _$&1| dm=0;

(4) there exists :, 0<:<1, such that

lim
n |

T

( |.n |2 _$): dm=1; (6.30)

(5) (6.30) holds for every :, 0<:�1.

Proof. (1) O (2) by Theorem 1.

(2) O (3) by Theorem 6.4.

(3) O (4) We prove (6.30) for := 1
2 . Using an elementary inequality

|- a&- b|�- |a&b|, a, b>0,
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we obtain by Jensen's inequality

|
T

| |.n | - _$&1| dm�|
T

- | |.n |2 _$&1| dm

��|
T

| |.n |2 _$&1| dm � 0.

(4) O (5) We put

;n(:)=|
T

( |.n |2 _$): dm, 0<:�1.

The function ;n is logarithmically convex [56, Theorem 10.12], while : �
;n(d )1�: is increasing on (0, 1]. Since obviously ;n(1)�1, we obtain that
limn ;n(:)=1 if limn ;n(:0)=1 and :0�:�1. Now, let 0<:<:0<1,
limn ;n(:0)=1. Then :0=:t0+t1 , where t0+t1=1, ti>0. The logarithmic
convexity of ;n implies

;n(:0)�;n(:)t0 } ;n(1)t1,

which yields limn ;n(:)=1.

(5) O (1) Applying the elementary identity |a&b|=|- a&- b| }
|- a+- b| and Cauchy's inequality, we obtain

|
T

| |.n |2 _$&1| dm�2 \|T

( |.n | - _$&1)2 dm+
1�2

=2(1+;n(1)&2;n( 1
2))1�2 � 0,

which obviously implies that m[` # T : _$(`)=0]=0. K

7. RAKHMANOV MEASURES

Proof of Theorem 3. Let us suppose fist that _ is absolutely continuous;
i.e., d_=_$ dm. By Fatou's theorem on nontangential limits [12, Chap. I,
Theorem 5.3] we have

Re
1+zbn fn

1&zbn fn
=

1&| fn | 2

|1&zbn fn | 2
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a.e. on T. By (2.12) we obtain

|.n |2 _$=Re
1+zbn fn

1&zbn fn
a.e. on T. (7.1)

The function z [ (1+zbn fn)�(1&zbn fn) is holomorphic in D, it equals 1
at z=0, and its real part is non-negative in D. By Herglotz' theorem this
function is represented as the Schwarz integral of a probability measure +.
It follows from (7.1) that +$=|.n |2 _$ a.e. on T. Since we assumed that
d_=_$ dm, we obviously obtain

|
T

|.n |2 _$ dm=|
T

|.n | 2 d_=1.

It follows that d+=+$ dm=|.n | 2 _$ dm, which completes the proof for
absolutely continuous measures _.

Now, let _ be an arbitrary probability measure on T. By (5.13) the
measures |.n |&2 dm and d_ have identical Fourier coefficients for the
indices }, |}|�n. This implies that the polynomials .0 , .1 , ..., .n are
orthogonal both in L2(d_) and in L2( |.n |&2 dm).

Applying Theorem 3 to the absolutely continuous measure |.n+} |&1 dm,
}=0, 1, ..., and using (5.11), we obtain that

|
T

`+z
`&z

|.n(`)|2 dm
|.n+} | 2=

1+zbn g}
n

1&zbn g}
n

, |z|<1, (7.2)

where g}
n are the Schur functions of order n of An+}&1 �Bn+}&1 . By Wall's

theorem (see Corollary 4.7)

lim
}

An+}&1

Bn+}&1

= f

uniformly on compact subsets of D. By Lemma 4.11 we obtain that

g}
n(z) �� fn(z), } � �, |z|<1. (7.3)

Taking (7.3) and (5.15) into account, we obtain (2.14) by passing to the
limit in (7.2) as } � +�. K

The following immediate consequence of Theorem 3 will be used in the
proof of Theorem 5.
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Corolllary 7.1. A probability measure _ on T is a Rakhmanov
measure if and only if

fn bn
�� 0, n � +� (7.4)

uniformly on compact subsets of D.

Corollary 7.2. Let _ be a probability measure with Geronimus
parameters (an)n�0 and (.n)n�0 the orthogonal polynomials in L2(d_). Then

|
T

`+z
`&z }

.n

.n+1 }
2

dm=
1+zanbn(z)
1&zanbn(z)

, |z|<1, (7.5)

|
T

`+z
`&z

1
2 \1+ } .n

.n+1 }
2

+ dm=
1

1&anzbn(z)
=

8n*(z)
8*n+1(z)

, |z|<1. (7.6)

Proof. Since the Schur function of order n for An �Bn is the constant an

(see (4.17) and Geronimus' theorem), (7.5) follows from (2.14). Indeed, by
(5.11) the rational function An �Bn is the Schur function of the probability
measure |.n+1| &2 dm. Finally, (7.6) is immediate from (7.5). K

Remark. Compare (7.5) and (7.6) with Lemma 4 by Rakhmanov [45].

Proof of Theorem 4. Let us suppose that (an)n�0 satisfies (2.18) for
every }, }=1, 2, ... . We have

|
T

|`.n&.n+1| 2 d_=2(1&- 1&|an | 2)�2 |an | 2. (7.7)

Since obviously `}.n = `}.n&} , .n+} = `}.n&} , .n+} = .n , }=1, 2, ...,
we obtain

|
T

`} |.n |2 d_=&|
T

(`}.n&.n+})(`}.n&}&.n) d_ (7.8)

for }=1, 2, ... . The following identities are obvious:

(`}.n&.n+})=(`}.n&`}&1.n+1)+(`}&1.n+1&`}&2.n+2)+ } } }

+(`.n+}&1&.n+}),
(7.9)

(`}.n&}&.n)=(`}.n&}&`}&1.n&}+1)

+(`}&1.n&}+1&`}&2.n&}+2)+ } } } +(`.n&1&.n).
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Taking into account (7.7) and (7.9), we obtain from (7.8) by Cauchy's
inequality (for }=1, 2, ...) that

} |T

`} |.n |2 d_ }
�&`}.n&.n+}& }&`}.n&}&.n&

�2(|an |+|an+1|+ } } } +|an+}&1| )( |an&} |+ } } } +|an&1| ). (7.10)

It follows from (2.18) that the right-hand side of (7.10) tends to zero as
n � +�. Hence _ is a Rakhmanov measure.

Let us suppose now that _ is a Rakhmanov measure. Then by
Corollary 7.1 fnbn

�� 0 uniformly on compact subsets of D. Taking the
quotient of the recurrence formulae in (1.11), we obtain that

bn+1(z)=
zbn(z)&a� n

1&zanbn(z)
. (7.11)

By (1.3) and (7.11) we have

zbn fn=
bn+1+a� n

1+anbn+1

}
zfn+1+an

1+a� n zfn+1

.

It follows that

zbn fn(1+anbn+1)(1+a� nzfn+1)=zbn+1 fn+1+an bn+1+|an |2+a� nzfn+1 ,

which obviously implies that

anbn+1(z)+|an |2+a� nzfn+1
�� 0. (7.12)

Multiplying (7.12) by fn+1 , we obtain that

#n fn+1(z)(#n+zfn+1(z)) �� 0. (7.13)

Notice that an=#n by Geronimus' theorem.

Lemma 7.3. Let f be a function in B satisfying (7.13). Then the sequence
(#n)n�0 of the Schur parameters of f satisfies (2.18).

Proof. We prove that

#n fn+}(z)(#n+zfn+1(z)) �� 0, n � +�, (7.14)
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uniformly on compact subsets of D for }=1, 2, ... . For }=1 (7.14) coin-
cides with (7.13). Let us suppose now that (7.14) holds for some } and
prove that it holds for }+1. We have

fn+}(1+#� n+}zfn+}+1)=zfn+}+1+#n+} . (7.15)

It follows from (7.14) (put z=0) that

|#n #n+} |�- |#2
n #n+} | � 0, n � +�.

Multiplying (7.15) by #n(#n+zfn+1), we obtain from (7.14) that

#n fn+}+1(z)(#n+zfn+1(z)) �� 0, n � +�. K

The Ma� te� �Nevai condition (2.18) with }=1 appeared for the first time
in [34], where it was shown that (2.18) for }=1 is a necessary condition
for (2.19). An example of a measure satisfying (2.19) but which is not in
Nevai's class was also given in [34].

In the following theorem we present different equivalent descriptions of
Rakhmanov measures.

Theorem 7.4. Let _ be a probability measure on T with Geronimus
parameters (an)n�0 , f the Schur function of _, (.n)n�0 the orthogonal poly-
nomials in L2(d_), (8n)n�0 the monic orthogonal polynomials, i.e.
8n=k&1

n } .n , and bn=.n �.n*. Then the following conditions are equivalent:

(1) _ is a Rakhmanov measure;

(2) the Geronimus parameters (an)n�0 (equivalently the Schur
parameters (#n)n�0 of f ) satisfy the Ma� te� �Nevai condition (2.18) for every
}=1, 2, ...;

(3) #n fn+1(z) �� 0, n � +�, uniformly on compact subsets of D;

(4) anbn(z) �� 0, n � +�, uniformly on compact subsets of D;

(5) bn(z) fn(z) �� 0, n � +�, uniformly on compact subsets of D;

(6) (V)&limn |
.n

.n+1
|2 dm=dm;

(7) (V)&limn |
.n

.n+l
|2 dm=dm for every l=0, 1, 2, ...;

(8)

8*n+1(z)
8n*(z)

�� 1, n � +�,

uniformly on compact subsets of D.
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Proof. (1) � (2) by Theorem 4.

(2) O (3) By (4.33.2) and (4.36) we have

fn+1=#n+1+ :
�

}=1

#n+1+}z} } h}, n(z), |h}, n(z)|�(1&|z| )&1. (7.16)

Multiplying (7.16) by #n , we obtain (3).

(3) O (2) If #n fn+1
�� 0, then we obviously have (7.13), which

implies (2) by Lemma 7.3.

(2) O (4) is similar to (2) O (3), since the Schur parameters of bn (see
Lemma 5.13 and (4.18)) are given by a finite sequence &a� n&1 , ..., &a� 0 , 1.

(4) O (2) If anbn(z) �� 0, then (put z=0) anan&1 � 0. By (7.11) we
have

bn(z)(1&zan&1bn&1(z))=zbn&1(z)&a� n&1 . (7.17)

Multiplying (7.17) by an , we obtain that an bn&1(z) �� 0 and therefore
an an&2 � 0. Now the proof is completed by induction.

(1) � (5) by Corollary 7.1.

(2) � (6) by Corollary 7.2 (see (7.5)) and by the already proved
equivalence (4) � (2).

(2) � (8) by Corollary 7.2 (see (7.6)) and by the already proved
equivalence (4) � (2).

(7) O (6) is obvious.

(2) O (7) By (5.11) and by (4.17) the Geronimus parameters of
|.n+l |

&2 dm are given by

a0 , ..., an+l&1 , 0, 0, ... .

Now, we put d_=|.n+l |
&2 dm in (7.10) and obtain

} |T

`} } .n

.n+l }
2

dm }
�2(|an |+|an+1|+ } } } +|an+l&1| )( |an&} |+ } } } +|an&1| ) � 0,

if n � +� for }=1, 2, ... . K

Theorem 7.5. Let (an)n�0 be a sequence in D satisfying the Ma� te� �Nevai
condition (2.18) for }=1, 2, ... . Then

lim
n

1
n+1

(|a0 |+|a1|+ } } } +|an | )=0 (7.18)
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Proof. Given =, =>0 let 4(=)=[n: |an |�=]. Since (an)n�0 satisfies
(2.18) for }=1, 2, ..., for every positive integer K there exists a positive
integer L=L(=, K) such that

|an+} an |<=2 (7.19)

for }=1, 2, ..., K and n�L.
Let M(=)=4(=) & [L, +�). We claim that the sets

M(=), M(=)+1, ..., M(=)+K (7.20)

do not intersect. Indeed, if (M(=)+ j) & (M(=)+i){< for i< j�K, then
there exists an integer n in M(=) such that n+( j&i) # M(=). It follows that
=2�|an+( j&i)an |, which contradicts (7.19), since 1� j&i�K.

Now, let

d=d(=)=lim
n

Card 4(=) & [0, n]
n

be the upper density of 4(=). By (7.20) we have

n�L+ :
K

j=0

Card(M(=)+ j) & [L, n]

�L+(K+1) Card M(=) & [L, n]&K(K+1)

=L+(K+1) Card 4(=) & [L, n]&K(K+1)

=L+(K+1) Card 4(=) & [0, n]&K(K+1)&(K+1) Card 4(=) & [0, L)

�(K+1) Card 4(=) & [0, n]&K(K+1)&K } L.

Now we divide both parts of the above inequality by n and pass to the
limit as n � +�. It follows that

1�(K+1) } d.

Since K is an arbitrary positive integer, we obtain that d=d(=)=0. Since
= is an arbitrary positive number and since (an)n�0 is bounded, we obtain
(7.18). K

Of course there are sequences which satisfy (7.18) but do not satisfy
(2.18) for any }. To obtain such examples we consider

4=[2n+} : n=0, 1, ..., }=0, 1, ..., n].
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Since obviously

Card 4 & [0, N]� :
2n<N

(n+1)�(log N)2,

the density of 4 is zero. On the other hand it is clear that

Card 4 & (4+})=+�

for every }. It follows that any sequence (an)n�0 such that an=0 for n � 4
and 0<$<|an |<1 for n # 4 satisfies (7.18) but does not satisfy (2.18).

We conclude this section with a remark concerning Theorem 7.4. It is
useful to compare the statement (8) of this theorem with Theorem 5.14. By
(5.42) and (4.26) we obtain that

8*n+1

8n*
=

kn

kn+1

}
.*n+1

.n*

=
|n

|n&1

}
1+o(1)
1&zf

} `
n&1

}=0

(1&#� } f}) }
1&zf

1+o(1)
} `

n

}=0

1
(1&#� } f})

=
(1&|#n |2)
1&#� n fn

(1+o(1))=(1+z#� n fn+1)(1+o(1))=1+o(1)

if and only if _ is a Rakhmanov measure.

8. CONVERGENCE OF CONTINUED FRACTIONS IN MEASURE

Recall that E(_)=[` # T : _$(`)>0] denotes the Lebesgue support of
a probability measure _. The following lemma shows that convergence of
Wall's approximants on E(_) in the L2-metric implies the convergence in
L2(T).

Lemma 8.1. Let f be the Schur function of a probability measure _ such
that

lim
n |

E(_) } f &
An

Bn }
2

dm=0. (8.1)

Then

lim
n |

T } f &
An

Bn }
2

dm=0. (8.2)
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Proof. It follows from (4.22) that f and An �Bn have matching Taylor
polynomials of order n at z=0. Therefore, Parseval's identity and Cauchy's
inequality imply

|
T } f &

An

Bn }
2

dm=|
T

| f |2 dm+|
T }An

Bn }
2

dm&2 Re |
T

f }
A� n

B� n
dm

=|
T }An

Bn }
2

dm&|
T

| f | 2 dm+o(1). (8.3)

Clearly,

|
E } f &

An

Bn }
2

dm�{\|E
| f | 2 dm+

1�2

&\|E }
An

Bn }
2

dm+
1�2

=
2

,

which by (8.1) implies that

|
E }

An

Bn }
2

dm&|
E

| f |2 dm=o(1), n � +�. (8.4)

Since obviously | f |=1 on T"E, |An �Bn |<1 on T (see (4.16)), we obtain

|
T"E }

An

Bn }
2

dm&|
T"E

| f |2 dm<0. (8.5)

Taking the sum of (8.4) and (8.5), we obtain from (8.3) that

0�|
T } f &

An

Bn }
2

dm�o(1), n � +�. K

Proof of Theorem 6. Let _ be a Rakhmanov measure. Then by
Corollary 7.1 fnbn

�� 0 uniformly on compact subsets of D. Since the linear
span of Poisson kernels is dense in L1(T) [12, Theorem 3.1] and fnbn # B,
it follows that limn � fnbnG dm=0 for every G in L1(T) (recall that L�(T)
is the dual space of the Banach space L1(T) [48]); i.e., fn bn � 0 in the
(V)-weak topology of L�(T). Hence

lim
n |

E
`bn fn dm=0 (8.6)

for every measurable subset E of T. Now, let

E=E(_)=[` # T : | f (`)|<1],
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where f is the Schur function of _; see (2.2). Integrating (6.4) over E and
using (8.6), we obtain

|
E

| fn |2 dm=|
E

(1& gn) dm+Re |
E

`bn fn dm

+|
E

(gn&1) Re(`bn fn) dm

�2 |
E

|1& gn | dm+o(1), n � +�. (8.7)

Resolving Eq. (1.3) with respect to zfn+1 (see also (4.25.3) and (4.25.4)),
we obtain that

| fn+1| } } 1&
A� n

B� n
f }= } f &

An

Bn } (8.8)

on T. Taking into account that An �Bn # B, f # B, we obtain from (8.7) and
(8.8) that

|
E } f &

An

Bn }
2

dm�4 |
E

| fn+1|2 dm�8 \|E
(1& gn)2 dm+

1�2

+o(1),

which implies (2.23) by Theorem 6.3 and Lemma 8.1. K

Proof of Theorem 5. If f is an inner function, then |E(_)|=0 and we
conclude that limn An �Bn= f in L2(T) by Lemma 8.1.

Now, let limn #n=0, #n being the Schur parameters of f. Then by
Corollary 4.12 fn

�� 0 uniformly on compact subsets of D. By Corollary 7.1
_ is a Rakhmanov measure, which implies that L2&limn An �Bn= f by
Theorem 6.

The necessity of the conditions of Theorem 5 follows from the lemma.

Lemma 8.2. Let f # B and let | f |<1 on a set E of positive Lebesgue
measure. If

lim
n |

E } f &
An

Bn } dm=0, (8.9)

then limn #n=0.
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Proof. By (4.37) we have

An+1

Bn+1

&
An

Bn
=#n+1 zn+1 |n

BnBn+1

=
#n+1zn+1

- 1&|#n+1|2
}
- |n

Bn
}
- |n+1

Bn+1

. (8.10)

Using (4.15), we obtain from (8.10) that

|
E }

An+1

Bn+1

&
An

Bn } dm=
|#n+1|

- 1&|#n+1|2
} |

E \1& }An

Bn }
2

+
1�2

_\1& }An+1

Bn+1 }
2

+
1�2

dm. (8.11)

It follows from (8.9) that An�Bn O f on E. Therefore

lim
n |

E \1& }An

Bn }
2

+
1�2

\1& }An+1

Bn+1 }
2

+
1�2

dm=|
E

(1&| f |2) dm>0

by Lebesgue's dominated convergence theorem [53, Chap. VII, Sect. 3,
Theorem VII.3.1]. On the other hand,

lim
n |

E }
An+1

Bn+1

&
An

Bn } dm=0

by (8.9). It follows that limn |#n+1| (1&|#n+1|2)&1�2=0. K

Corollary 8.3. Let _ be a probability measure with Schur-function f
and let |E(_)|>0. Then _ is in Nevai 's class if and only if

lim
n |

E(_)
| fn |2 dm=0. (8.12)

Proof. By the Khinchin�Ostrovskii's theorem [44], (8.12) implies that
fn

�� 0 in D. It follows that limn #n=limn fn(0)=0. On the other hand, if
limn #n=0, then fn

�� 0 in D by Corollary 4.12. By Corollary 7.1 _ is a
Rakhmanov measure. Now (8.12) follows from (8.7). K

Remark. Recall (see Section 2) that in [59] Totik constructed examples
of measures _ in Nevai's class such that 0<|E(_)|<=, where = can be
arbitrary small.
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Corollary 8.4. Let _ be a probability measure with |E(_)|>0 which
does not belong to Nevai 's class. Then the sequence of the Wall approximants
(An �Bn)n�0 diverges in measure on any subset of positive Lebesgue measure
in E(_).

Proof. By Wall's Theorem AnBn
�� f uniformly on compact subsets of

D. Since the linear span of Poisson kernels is dense in L1(T) [12,
Theorem 3.1] and An �Bn # B, it follows that (V)&limn An �Bn= f in the
(V)-weak topology of L�(T). Therefore

lim
n |

T

(An�Bn) h dm=|
T

hf dm (8.13)

for any h, h # L1(T). Now, suppose that An �Bn O g on E/E(_), |E|>0.
Then by Lebesgue's dominated convergence theorem [53, Chap. VII,
Sect. 3, Theorem VII.3.1] and (8.13) we obtain that

|
T

gh dm=|
T

fh dm

for every h supported by E, which implies that g= f a.e. on E. Applying
again Lebesgue's theorem, we obtain (8.9), which by Lemma 8.2 implies
that _ is in Nevai's class. K

Now we prove Nevai's results (2.3) stated in Section 2. We summarize
some useful inequalities of Section 6 in the following lemma.

Lemma 8.5. Let _ be a probability measure on T with Geronimus
parameters (an)n�0 and with Schur function f, (.n)n�0 the orthogonal poly-
nomials in L2(d_). Then

1
2 |an |2� 1

2 |
T

| fn |2 dm�|
T

|1&|.n | 2 _$| dm�12 } |
T

| fn | dm. (8.14)

Proof. By Geronimus' theorem an= fn(0). Therefore the first inequality
in (8.14) follows by the mean-value theorem and by Cauchy's inequality.
The second inequality follows from (6.6) and (6.7). The third inequality
coincides with (6.25). K

It follows from (5.11) that An+l �Bn+l is the Schur function of the
probability measure |.n+l+1|&2 dm, l=0, 1, ... . We denote by f l

n the Schur
function of order n for An+l �Bn+l . By (4.17)

an= f l
n(0), f 0

n #an , n=0, 1, ..., l=0, 1, ... . (8.15)

We begin with the second equivalence (2.3).
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Theorem 8.6 (Nevai [41]). Let _ be a probability measure on T and
(.n)n�0 be the orthogonal polynomials in L2(d_). Then _ is in Nevai 's class
if and only if

lim
n

inf
l�0 |T } |.n |2

|.n+l+1|2&1 } dm=0. (8.16)

Proof. This is immediate from (8.14) if we put _$=|.n+l+1|&2. Indeed,
by (8.15) an= f l

n(0) for every l, l=0, 1, ..., and �T | f 0
n | dm=|an |. K

The proof of the first equivalence (2.3) is more complicated.

Theorem 8.7 (Nevai [41]). Let _ be a probability measure on T and
(.n)n�0 be the orthogonal polynomials in L2(d_). Then _ is an Erdo� s
measure if and only if

lim
n

sup
l�0

|
T } |.n |2

|.n+l+1|2&1 } dm=0 (8.17)

Proof. By (1.3), see also (4.25.3) and (4.25.4), we have

zf l
n =

Bn&1(An+l �Bn+l)&An&1

B*n&1&A*n&1(An+l�Bn+l)

=
(An+l �Bn+l)&(An&1 �Bn&1)

(B*n&1 �Bn&1)&(A*n&1�Bn&1)(An+l �Bn+l)
. (8.18)

Suppose first that (8.17) holds. Then L1&limn |.n�.n+1|2=1 and there-
fore _ is a Rakhmanov measure by (1) � (6) of Theorem 7.4. By
Theorem 6 An �Bn O f on T. Passing to the limit in (8.18) as l � +�, we
obtain that f l

n O fn , l � +�.
Now let _$=|.n+l+1|&2 in (8.14). Applying Lebesgue's dominated con-

vergence theorem, we obtain from the second inequality (8.14) that

|
T

| fn |2 dm�2 sup
l�0

|
T } |.n |2

|.n+l+1| 2&1 } dm,

which implies that _ is an Erdo� s measure by Theorem 1.
Now let _ be an Erdo� s measure. Then limn an=0 by Rakhmanov's

theorem (see Corollary 2.3). It follows that _ is a Rakhmanov measure by
(1) � (4) of Theorem 7.4. By Theorem 6 An �Bn O f on T.

Multiplying both sides of (8.18) by the denominator of the second frac-
tion in (8.18) and using the triangle inequality, we obtain that

|
T

| f l
n | (1&| f | ) dm�|

T }An+l

Bn+l
&

An&1

Bn&1 } dm+|
T }An&1

Bn&1

& f } dm.
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It follows that

lim
n

sup
l

|
T

| f l
n | (1&| f | ) dm=0.

Therefore

lim
n

sup
l

|
E

| f l
n | dm=0 (8.19)

for any measurable set E, E/T, with supE | f |<1. Since | f |<1 a.e. on T,
for every =>0 there is E with supE | f |<1 such that |T"E|<=. Observing
that f l

n # B, we obtain from (8.19) that

lim
n

sup
l

|
T

| f l
n | dm=0.

The result now follows from the third inequality (8.14) with _$=
|.n+l+1|&2. K

The following corollary is immediate from (8.14) and Theorem 8.7.

Corollary 8.8. A probability measure _ is an Erdo� s measure if and
only if

lim
n

sup
l

|
T

| f l
n |2 dm=0. (8.20)

Now we show how Theorem 7 can be obtained from Theorem 5.

Proof of Theorem 7. We observe that by (5.5)

�*n+1(z)
.*n+1(z)

=
1+z(An�Bn)
1&z(An�Bn)

. (8.21)

Clearly, (8.21) shows that �*n+1 �.*n+1 is the (n+1)th approximant of the
continued fraction (1.16).

For every z, z # T,

{z(x)=
1+zw
1&zw

=&z�
1+zw
w&z�
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is a superposition of two rotations of the Riemann sphere, which keep
invariant the metric k(w1 , w2); see (3.14).

It follows that

k \�*n+1

.*n+1

, F_+=k \An

Bn
, f+ (8.22)

a.e. on T. Let 'n be the function on T defined by the left-hand side of
(8.22). Since An �Bn # B, f # B, we obtain from (8.22) that

1
2 } f &

An

Bn }�'n� } f &
An

Bn }.
Now we complete the proof by Theorem 5 and by the observation that
'n O 0 on T if and only if �n* �.n* O F_ on T. K

Theorem 8 is an easy corollary of Theorem 7.

Proof of Theorem 8. Since Re �n* �.n*>0 in D, see (5.10), we obtain
that

|
T }�n*

.n* }
s

dm�
1

cos(?s�2)
, 0<s<1, (8.23)

by Smirnov's theorem [12, Chap. III, Sect. 2, Theorem 2.4].
Given p, 0<p<1, we fix any r>1 with s=rp<1. Then for every e,

e/T, we have by Ho� lder's inequality

|
e }

�n*
.n* }

p

dm�|e|1�r$ } \|e }
�n*
.n* }

pr

dm+
1�r

�
|e|1&1�r

(cos(?rp�2))1�r . (8.24)

If _ is a singular measure or _ is in Nevai's class, then �n* �.n* O F_ by
Theorem 7. For every =, =>0, we put

e(=, n)=[` # T : |(�n*�.n*)&F_ |>=].

It follows that

lim
n � +�

|e(=, n)|=0. (8.25)

Now we have

lim
n |

T }�n*
.n*

&F_ }
p

dm�= p+lim
n |

e(=, n) }
�n*
.n* }

p

+lim
n |

e(=, n)
|F_ | p dm

�= p+
2 limn |e(=, n)|1&1�r

(cos(?rp�2))1�r == p,
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by (8.24) and (8.25) and by Lebesgue's dominated convergence theorem.
Since = is arbitrary, we obtain (2.25). K

We consider now one more corollary of Theorem 7.

Corollary 8.9. Let _ be either a singular measure or a measure in
Nevai 's class. Then for every p, 0<p<+�,

lim
n |

T } log
�n*
.n*

&log F_ }
p

dm=0. (8.26)

Proof. By (5.9) there exists a continuos function An(`) on T, such that
&An&�<?�2 and Arg(�n* �.n*)=An on T. We have

log
�n*
.n*

=log }�n*
.n* }+iAn . (8.27)

It follows that log |�n* �.n* | is the harmonic conjugate of &An . By
Theorem 7 �n* �.n* O F_ and therefore An O A=Arg F_ . Since (An)n�0 is
uniformly bounded, we obtain (8.26) for every p, 1<p<+�, by
Lebesgue's dominated convergence theorem and by Riesz' theorem [12,
Chap. III, Theorem 2.3]. For p, 0<p�1, the result follows by Ho� lder
inequality. K

It is interesting to compare (8.26) with (2.13). Recall that _&1 is the
probability measure with Geronimus parameters (&an)n�0 , where (an)n�0

are the Geronimus parameters of _, see Section 1. Clearly, & f is the Schur
function of _&1 , see (1.3). It follows that F_&1

=1�F_ and therefore

_$&1=
_$

|F_ |2 a.e. on T. (8.28)

Applying Theorem 2.5 separately to _ and _&1 , we obviously obtain that

lim
n |

T } log
|�n |
|.n |

&log |F_ | } dm=0,

if _ is a Szego� measure (which, in view of (8.28), is equivalent to _&1 being
a Szego� measure). Corollary 8.9 says that although for singular measures
and for measures of Nevai's class we cannot guarantee the convergence of
log |.n* | in the L1-metric, as we can for Szego� measures, still we can
guarantee more than that for log |�n* �.n* |.
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The following theorem extends Corollary 5.11 to Nevai's class.

Theorem 8.10. Let _ be either a singular measure or a measure in
Nevai 's class. Then for every p, 0<p<1,

lim
n |

T }
1

|.n |2&_$ }
p

dm=0. (8.29)

Proof. We suppose first that p<1�4. Then, by (5.11) and Cauchy's
inequality, we have

|
T } 1

|.n+1|2&_$ }
p

dm�\|T } 1& }An

Bn }
2

&_$ } 1&z
An

Bn }
2

}
2p

dm+
1�2

(8.30)

_\|T

dm
|1&z(An �Bn)|4p+

1�2

.

The second integral on the right-hand side of (8.30) is uniformly bounded,
by Smirnov's theorem, since 4p<1 and Re(1&z(An �Bn))>0 in D. The
first integral on the right-hand side of (8.30) tends to zero as n � +� by
Lebesgue's dominated convergence theorem, since by Theorem 5

1& }An

Bn }
2

&_$ }1&z
An

Bn }
2

O 1&| f |2&_$ |1&zf |=0;

see (2.2).
The proof can be completed now by use of convexity arguments. Let

$n( p)=|
T } 1

|.n |2&_$ }
p

dm, 0<p�1.

Clearly, $n(1)�2. The function $n is logarithmic convex [56, Theorem 10.12].
Now, let p<1. We pick any p0<min(1�4, p). Then p=t0 p0+t1 , where
t0+t1=1, ti>0. By the logarithmic convexity of $n we have

$n( p)�$n( p0)t0 $n(1)t1�2t1 } $n( p0)t0 � 0,

since p0<1�4. K

The following corollary is immediate from Theorem 8.10.

Corollary 8.11. Let _ be a measure in Nevai 's class. Then

1
|.n |2 O _$, on T, (8.31)

|.n | 2 _$ O 1E(_) . (8.32)
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Theorem 8.12. Let _ be a measure in Nevai 's class. Then for every p,
0<p<1,

lim
n |

T

| |.n | 2 _$&1E(_) | p dm=0 (8.33)

Proof. It is similar to that of Theorem 8.10. If p<1�4, then by (2.12)
and by Cauchy's inequality

|
T

| |.n |2 _$&1E(_) | p dm�\|E(_)
|1&| fn |2&|1&`bn fn |2| 2p dm+

1�2

(8.34)

_\|T

dm
|1&`bn fn | 4p+

1�2

.

By Smirnov's theorem and by Corollary 8.3 the right-hand side of (8.34)
tends to zero as n � +�. For 1�4�p<1 we apply convexity
arguments. K

Corollary 8.13. Let _ be a measure in Nevai 's class. Then for every p,
0<p<1,

lim
n |

T

( |.n |2 _$) p dm=|E(_)|.

Proof. This follows from (8.33) by the elementary inequality |a p&b p|
�|a&b| p, 0<p<1. K

9. INNER FUNCTIONS AND UNIMODULAR FUNCTIONS ON
AN ARC

Recall that a function f in B is called an inner function if | f |=1 a.e. on
T [12, Chap. II, Sect. 6, 22]. By (2.2) inner functions are Schur functions
of singular measures. Therefore it follows from Szego� ' s theorem, see
Corollary 5.12, that

:
�

n=0

|#n |2=+� (9.1)
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for the Schur parameters of any inner function. This, however, can be
shown directly. Indeed, given an inner function f we obtain from (4.25.3)
that

|
T

log |Bn f &An | dm= :
n

}=0
|

T

log |1&#� } f} | dm,

since fn+1 is an inner function; see (6.1). Observing that Bn(0)=1, we
obtain by the mean-value theorem that

|
T

log } f &
An

Bn } dm= :
n

}=0

log(1&|#} | 2). (9.2)

By Lemma 8.1 An�Bn O f, if f is an inner function, which yields (9.1).
On the other hand, p=2 is the largest value such that (9.1) takes place

for all inner functions. For example, it is shown in [28] that there exist
infinite Blaschke products such that

:
�

n=0

|#n | p<+�

for every p, p>2. Another example is provided by Theorem 5.

Corollary 9.1. Suppose that the Schur parameters (#n)n�0 of f, f # B,
satisfy the Ma� te� �Nevai condition

lim
n

#n #n+}=0

for }=1, 2, ..., but limn #n>0. Then f is an inner function.

Proof. Let _ be the probability measure with Schur function f. By
Geronimus' theorem the Geronimus parameters of _ satisfy the Ma� te� �
Nevai condition for }=1, 2, ..., which implies that _ is a Rakhmanov
measure by Theorem 4. By Theorem 6 Wall's approximants An �Bn

converge to f in L2(T). Since limn |#n |>0, it follows from Theorem 5 that
f is an inner function. K

Corollary 9.2. Let (n})}�0 be a sequence of nonnegative integers such
that

lim
}

n}+1&n}=+� (9.3.1)
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and let 4=[n} : }=0, 1, ...]. Suppose that the Schur parameters (#n)n�0 of
f, f # B, satisfy

lim
n � 4

|#n |=0, (9.3.2)

lim
n # 4

|#n |>0. (9.3.3)

Then f is an inner function.

Proof. In view of (9.3.1) n and n+} cannot both belong to 4 for
infinitely many n's for a fixed positive }. It follows by (9.3.2) that the
sequence (#n)n�0 satisfies the Ma� te� �Nevai condition for }=1, 2, ... . By
Corollary 9.1 we conclude��see (9.3.3)��that f is an inner function. K

Given any Szego� measure with Schur function f we can construct
infinitely many inner functions with Schur parameters which are ``close'' to
the Schur parameters of f. Indeed, we can take any gap subset 4 satisfying
(9.3.1) and redefine the parameters #n for n # 4 to satisfy (9.3.3). Then by
Corollary 9.2 the functions obtained are inner.

Our next goal is to characterize inner functions in terms of Schur func-
tions. The key is the following theorem, which allows one to extract some
information on the behavior of Schur functions for general probability
measures.

Theorem 9.3. Let _ be a probability measure on T with Schur functions
( fn)n�0 . Then for every p, p<1�4, there exists a constant cp , cp>0, such
that

\|E
(_$) p dm+

1�p

�cp } |
E

(1&| fn |2) dm (9.4)

for any measurable subset E of T.

Proof. Applying (2.12) and Ho� lder's inequality with 1�p and 1�(1& p),
we obtain that

|
E

(_$) p dm

=|
E

(1&| fn |2) p }
dm

|.n |2p |1&`bn fn |2p (9.5)

�\|E
(1&| fn |2) dm+

p

} \|E

dm
[ |.n | |1&`bn fn |2p�(1& p)]+

1& p

.
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Since (1& p)�p>1, we can apply Ho� lder's inequality with (1& p)�p and
(1& p)�(1&2p) to the second integral on the right-hand side of (9.5):

|
E

dm
|.n | 2p�(1& p) |1&`bn fn |2p�(1& p)

�\|E

dm
|.n |2+

p�(1& p)

\|E

dm
|1&`bn fn |2p�(1&2p)+

(1&2p)�(1& p)

. (9.6)

Since 4p<1, the second integral in the right-hand side of (9.6) is bounded
by a constant by Smirnov's theorem [12, Chap. III, Section 2, Theorem 2.4],
while the first is bounded by 1, since |.n |&2 dm is a probability measure
(put z=0 in (5.11)). Combining (9.5) and (9.6), we obtain (9.4). K

The meaning of (9.4) can be summarized as follows: if a measurable set
E carries a positive mass of the absolutely continuous part of _, then the
corresponding Schur functions satisfy

lim
n |

E
| fn |2 dm�|E|&c&1

p \|E
(_$) p dm+

1�p

<|E|. (9.7)

Corollary 9.4. Let f # B. Then f is an inner function if and only if

lim
n |

T

| fn |2 dm=1. (9.8)

Proof. Let E=T in (9.4). Then it follows from (9.8) that the left-hand
side of (9.4) is zero, which implies that _$=0 a.e. on T. On the other hand
if f is an inner function, then | fn |=1 a.e. on T for every n; see (6.1). K

Corollary 9.5 [46, Lemma 4]. Let f # B and let

limn |#n |=1. (9.9)

Then f is an inner function.

Proof. By the mean-value property of fn we have

|#n |=| fn(0)|= } |T

fn dm }�\|T

| fn | 2 dm+
1�2

. K

We consider now inner functions satisfying (2.34).

Proof of Theorem 10. Let F be the closed set of the limit points of the
sequence &#� n#n&1 , n=1, 2, ... . By (2.34) F/T. By Theorem 3, fnbn is the
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Schur function of the probability measure |.n | 2 d_. Next, fn(0) bn(0)=
&#n#� n&1 . The family fnbn is compact and its limit points in B are constant
functions with values in the complex conjugate set to F. It follows that the
set of all weak-(V) limit points of the family |.n |2 d_, n=0, 1, ..., is exactly
the set [${ : { # F]. This obviously implies that F/supp(_). Moreover, F is
contained in the derived set of supp(_). Indeed, suppose to the contrary
that {, { # F, is an isolated point of supp(_). Then there exists a subset 4
of the set of all positive integers such that

lim
n # 4 |

T

h |.n |2 d_=h({) (9.10)

for every continuous function h. On the other hand

:
�

n=0

|.n({)| 2=_[{]&1; (9.11)

see [1, Theorem 20.2] or the remark on p. 405 of [18] for an elementary
proof of (9.11) with the inequality � instead of the equality. Clearly, (9.11)
implies that

lim
n

|.n({)|=0,

which, however, contradicts (9.10) if supp(h) & supp(_)={ and h({)=1.
To prove that the derived set of supp(_) is contained in F we apply

Worpitsky's theorem; see Section 2, (2.30).
By equivalence transforms we can replace (1.7) with

K
�

n=1

(an(z)�1), a1 ##0 , a2=&
(1&|#0 | 2)(#1 �#0) z

1+(#1�#0) z
,

(9.12)

an(z)=&
(1&|#n&2 |2)(#n&1 �#n&2) z

(1+(#n&1 �#n&2) z)(1+(#n&2 �#n&3) z)
, n=3, 4, ... .

Let I be any closed arc in T"F. Then it is clear from (9.12) that the
denominators of an(z) in (9.12) are uniformly bounded away from zero in
an open neighborhood V of I. It follows from (2.34) that

lim
n

sup
z # V

|an(z)|=0.

Then by Worpitsky's theorem K�
n=N(an(z)�1) converges absolutely and

uniformly in V (see Section 3) to a holomorphic function if N is suf-
ficiently large. Since by Wall's theorem the continued fraction (1.7) con-
verges absolutely and uniformly on compact subsets of D to the Schur

240 SERGEI KHRUSHCHEV



function f of _, we obtain that f admits a meromorphic extension to V.
Since f # B we conclude that f is holomorphic on I. Clearly, possible points
of supp(_) in I are located in the zeros of the holomorphic function 1&zf.
It follows that supp(_) & (T"F ) consists only of isolated points. K

By Nevanlinna's factorization theorem [12, Chap. II, Theorem 5.4] any
inner function f can be represented as

f =*B } S, (9.13)

where * # T, |*|=1, B is the Blaschke product constructed from the zeros
of f in D,

B(z)=znf } `
�

n=1

|zn |
zn

}
zn&z

1&z� nz
, nf�0,

and S is a singular inner function

S(z)=exp {&|
T

`+z
`&z

d+= ,

where + is a singular measure.
By Theorem 2.7 and (9.13) we obtain the following characterization of

the Schur functions of probability measures with a one-point derived set.

Corollary 9.6. Let _ be a probability measure on T with infinite
support. Then the following statements are equivalent:

(1) the derived set of supp(_) is [{];

(2) d+=a } ${ , a�0, { is the only limit point of [zn].

Let us consider now f =S with d+=$1 . Since f is real on (&1, 1), we
conclude that the Schur parameters #n of f are also real. By Theorem 2.7
limn #n#n&1=&1, which shows that [#n] has two limit points [+1],
[&1].

Proof of Theorem 9. Let f be the Schur function of _. It follows from
(1.3) that the Schur parameters of f % (z)= f (ei%z) are given by the sequence
#0 , ei%#1 , ..., ein%#n , ... . Hence we may suppose without loss of generality that
in (2.32.2) %=0.

We apply Pringsheim's theorem to the continued fraction

KN (z)= K
�

n=N
\&

(1&|#n&1|2)(#n�#n&1) z
1+(#n �#n&1) z + .
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Then (2.31) takes the following form

} #n&1

#n
+z }�(1&|#n&1 |2) |z|+ } #n&1

#n } , n=1, 2, ... . (9.14)

Let 2n be the open disc centered at cn=&#n&1�#n with radius
(1&|#n&1| 2)+|#n&1 �#n |. By (2.32.1) we have

0<inf
n

|cn |�sup
n

|cn |<+�.

It follows from (2.32.2) (with %=0) that for all sufficiently large n the cen-
ters cn lie in an arbitrarily small angel with vertex at z=0 and bisectrix
directed along the negative real semi-axis. Since supn(1&|#n&1|2)<1, we
can find an open neighborhood U of the point z=1 such that 2n & U=<
for n=N, N+1, ..., where N is a large positive integer. Squeezing U if
necessary, we obtain that (9.14) holds in U for n�N. By Pringsheim's
theorem this implies that the continued fraction KN converges to
a bounded holomorphic function in U. It follows that

f (z)=#0(1+K1(z))&1

is meromorphic in U. Since f is bounded in D & U, we conclude that f is
holomorphic on some open arc I centered at z=1, and that the continued
fraction (1.7) converges to f uniformly on I:

lim
n

sup
I } f &

An

Bn }=0.

Since limn |#n |>0, we obtain by Lemma 8.2 that | f |=1 on I. By (1.14)
supp(_) & I consists of the roots of the holomorphic function 1&zf on I.

K

10. SCHUR FUNCTIONS OF SMOOTH MEASURES

We derive Theorem 11 from the following theorem.

Theorem 10.1. Let _ be a probability measure with Schur functions
( fn)n�0 and let (.n)n�0 be the orthogonal polynomials in L2(d_). Suppose
that & fn &�<1�2. Then

| |.n |2 _$&1|<
6 | fn |

1&2 | fn |
(10.1)

on the unit circle T.
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Proof. If |.n | 2 _$&1<0 then (10.1) follows from (6.28). It follows from
(2.12) that

|.n |2 _$&1=2
Re(`bn fn)&| fn |2

|1&`bn fn | 2 , (10.2)

which implies that |.n | 2 _$&1�0 if and only if Re(`bn fn)�| fn | 2. Now,
let |.n | 2 _$&1�0 at `, ` # T. By (6.4) we have

|.n |2 _$&1
|.n |2 _$+1

=Re(`bn fn)&| fn |2+
|.n | 2 _$&1
|.n |2 _$+1

Re(`bn fn) (10.3)

Notice that the fraction in the left-hand side of (10.3) is nonnegative and
is bounded by 1. Since | fn |2�Re(`bn fn)�| fn |, we obtain from (10.3) that

0�
|.n | 2 _$&1
|.n | 2 _$+1

�2 | fn |,

which obviously yields

|.n |2 _$&1�
4 | fn |

1&2 | fn |
(10.4)

and therefore (10.1) holds. K

Proof of Theorem 11. By (10.1) we obtain

& |.n | 2 _$&1&�=O \ 1
n:+ ,

which implies that infT _$>0. It follows that

& |.n | 2&1�_$&�=O \ 1
n:+ .

Notice that |.n | 2=.n } .� n is a trigonometric polynomial of order n. Now
the result follows by the Bernstein�Zygmund theorem [56, Chap. III,
Theorem 13.20]. K

Recall that in Section 1, to any probability measure _ on T, we related
the family of probability measures _* , * # T, with Geronimus parameters
(*an)n�0 . It is clear from (1.3) and from Geronimus' theorem that *f is the
Schur function of _* .

Let .n(z, *), �n(z, *) be the orthogonal polynomials in L2(d_*) and in
L2(d_&*), respectively. Analyzing the continued fraction (1.16) for F_*

, we
conclude that only its first term depends on *.
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Now, we apply the notations of Section 3 to the continued fraction (1.6);
see (3.4). Let (sn)n�0 be the sequence of Mo� bius transforms for the con-
tinued fraction of F_ , whereas (sn*)n�0 denotes the similar sequence for F_*

.
We have

s0 =s0* , sn =sn*(n�2),

s1(w)=
2a0z

1&a0 z+w
, s1*(w)=

2*a0z
1&*a0 z+w

, (10.5)

which by (3.4) implies

Sn*(0)=s0* b s1* b s&1
1 b s&1

0 b Sn(0). (10.6)

Easy algebraic computations show that

s0* b s1* b s&1
1 b s&1

0 (w)=
(w+1)+*(w&1)
(w+1)&*(w&1)

. (10.7)

We already mentioned in Section 1 that (9n*)n�0 is the sequence of
numerators and (8n*)n�0 the sequence of denominators of the continued
fraction (1.16). By (10.6�10.7) we obtain

.n(z, *)=
1+*�

2
.n(z)+

1&*�
2

�n(z),

(10.8)

.n*(z, *)=
1+*

2
.n*(z)+

1&*
2

�n*(z);

see [13, Theorem 7.1, (7.4)].

Lemma 10.2. For every z, z # T, the map

* [ *bn(z, *)

is a homeomorphism of the unit circle.

Proof. By (10.8) and by (5.5) we obtain

*bn(z, *)=*
.n(z, *)
.n*(z, *)

=
(1+*) .n&(1&*) �n

(1+*) .n*+(1&*) �n*

=
(.n&�n)+*(.n+�n)

(.n*+�n*)+*(.n*&�n*)
=

&A*n&1+*zB*n&1

Bn&1&*zAn&1

(10.9)

=
B*n&1

Bn&1

}
*z&(A*n&1 �B*n&1)
1&*z(An&1 �Bn&1)

.
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Observing that for z # T, A*n&1 �B*n&1=A� n&1 �B� n&1 , and that by (4.6) this
complex number lies in D, we obtain from (10.9) that * [ bn(z, *) is a
composition of Mo� bius transforms of T. K

Corollary 10.3. Let _ be a probability measure on T. Then

| fn |�sup
* # T

| |.n(`, *)|2 _$*&1| (10.10)

on the unit circle T.

Proof. By Lemma 10.2, given ` # T there exists * # T such that

`bn(`, *) } * } fn(`)=Re[`bn(`, *) *fn]=&| fn |. (10.11)

Using (10.2), we obtain that

sup
* # T

| |.n(`, *)|2 _$*&1|�2
| fn |+| fn |2

(1+| fn | )2 =
2 | fn |

1+| fn |
�| fn | , (10.12)

as stated. K

Proof of Theorem 12. Since _ is absolutely continuous and (_$)&1 # 4: ,
its harmonic conjugate function

&
1
? |

?

&?

d_(t)

2tg
(t&x)

2

,

see [56, Chap. VII, (1.8)], [56, Chap. III, Theorem 13.29] is in 4: . It
follows that F_ # 4: . Since

zf =
F_&1
F_+1

and obviously (F_+1)&1 # 4: , we conclude that f # 4: . Moreover,
& f &�<1 since inf _$>0. Observing that *f is the Schur function of _* , we
obtain that

* � (_$*)&1

is a homeomorphism of T into 4:"[0].
By Szego� ' s theorem

.n(z, *)=
zn

D(_* , z)
+O \log n

n: + , n � +�
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uniformly in z and *; z, * # T [21]. Notice that the proof given in [21,
Sect. 3.5] extends to :>1 by Bernstein's theorem on best polynomial
approximation. It follows that

sup
* # T

| |.n(`, *)|2 _$*&1|=O \log n
n: +

uniformly in `, ` # T, which implies (2.36) by Corollary 10.3. K
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